PointTAD: Multi-Label Temporal Action Detection with Learnable Query Points

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental


Jing Tan, Xiaotong Zhao, Xintian Shi, Bin Kang, Limin Wang


Traditional temporal action detection (TAD) usually handles untrimmed videos with small number of action instances from a single label (e.g., ActivityNet, THUMOS). However, this setting might be unrealistic as different classes of actions often co-occur in practice. In this paper, we focus on the task of multi-label temporal action detection that aims to localize all action instances from a multi-label untrimmed video. Multi-label TAD is more challenging as it requires for fine-grained class discrimination within a single video and precise localization of the co-occurring instances. To mitigate this issue, we extend the sparse query-based detection paradigm from the traditional TAD and propose the multi-label TAD framework of PointTAD. Specifically, our PointTAD introduces a small set of learnable query points to represent the important frames of each action instance. This point-based representation provides a flexible mechanism to localize the discriminative frames at boundaries and as well the important frames inside the action. Moreover, we perform the action decoding process with the Multi-level Interactive Module to capture both point-level and instance-level action semantics. Finally, our PointTAD employs an end-to-end trainable framework simply based on RGB input for easy deployment. We evaluate our proposed method on two popular benchmarks and introduce the new metric of detection-mAP for multi-label TAD. Our model outperforms all previous methods by a large margin under the detection-mAP metric, and also achieves promising results under the segmentation-mAP metric.