
PointTAD: Multi-Label Temporal Action Detection
with Learnable Query Points

Jing Tan 1∗ Xiaotong Zhao 2 Xintian Shi 2 Bin Kang 2 Limin Wang 1,3†

1State Key Laboratory for Novel Software Technology, Nanjing University
2Platform and Content Group (PCG), Tencent 3Shanghai AI Lab

jtan@smail.nju.edu.cn, {davidxtzhao,tinaxtshi,binkang}@tencent.com, lmwang@nju.edu.cn

Abstract

Traditional temporal action detection (TAD) usually handles untrimmed videos
with small number of action instances from a single label (e.g., ActivityNet, THU-
MOS). However, this setting might be unrealistic as different classes of actions
often co-occur in practice. In this paper, we focus on the task of multi-label tem-
poral action detection that aims to localize all action instances from a multi-label
untrimmed video. Multi-label TAD is more challenging as it requires for fine-
grained class discrimination within a single video and precise localization of the
co-occurring instances. To mitigate this issue, we extend the sparse query-based
detection paradigm from the traditional TAD and propose the multi-label TAD
framework of PointTAD. Specifically, our PointTAD introduces a small set of
learnable query points to represent the important frames of each action instance.
This point-based representation provides a flexible mechanism to localize the dis-
criminative frames at boundaries and as well the important frames inside the action.
Moreover, we perform the action decoding process with the Multi-level Interactive
Module to capture both point-level and instance-level action semantics. Finally,
our PointTAD employs an end-to-end trainable framework simply based on RGB
input for easy deployment. We evaluate our proposed method on two popular
benchmarks and introduce the new metric of detection-mAP for multi-label TAD.
Our model outperforms all previous methods by a large margin under the detection-
mAP metric, and also achieves promising results under the segmentation-mAP
metric. Code is available at https://github.com/MCG-NJU/PointTAD.

1 Introduction

With the increasing amount of video resources on the Internet, video understanding is becoming one
of the most important topics in computer vision. Temporal action detection (TAD) [50, 23, 21, 4, 10,
19, 36] has been formally studied on traditional benchmarks such as THUMOS [15], ActivityNet [14],
and HACS [48]. However, the task seems impractical because their videos almost contain non-
overlapping actions from a single category: 85% videos in THUMOS are annotated with single
action category. As a result, most TAD methods [23, 21, 43, 5, 34] simply cast this TAD problem into
sub-problems of action proposal generation and global video classification [40]. In this paper, we
shift our playground to the more complex setup of multi-label temporal action detection, which aims
to detect all action instances from multi-labeled untrimmed videos. Existing works [9, 16, 38, 8] in
this field formulate the problem as a dense prediction task and perform multi-label classification in a
frame-wise manner. Consequently, these methods are weak in localization and fail to provide the
instance-level detection results (i.e., the starting time and ending time of each instance). In analogy
to image instance segmentation [22], we argue that it is necessary to redefine multi-label TAD as a

∗Work is done during internship at Tencent PCG. †Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/MCG-NJU/PointTAD

39.0s
31.5s Jump 36.2s

34.6s BodyContact 35.4s
39.0s 43.4s

24.0s

(24.0s, 25.0s, Sit)
(25.7s, 32.4s, Run)

S1 (32.1s, 34.1s, Jump)
S2 (32.2s, 36.3s, Sit)

(38.8s, 43.9s, Run)
(39.0s, 43.8s, Walk)Predictions

Run

Sit

Groundtruths

Mistake S1 Mistake S2 Other Mistakes

Figure 1: Illustration of action predictions by segment-based action detectors in multi-label TAD.

instance-level detection problem rather than a frame-wise segmentation task. In this sense, multi-label
TAD results not only provide the action labels, but also the exact temporal extent of each instance.

Direct adaptation of action detectors is insufficient to deal with the challenges of concurrent instances
and complex action relations in multi-label TAD. The convention of extracting action features from
action segments [4, 31, 47, 41] lacks the flexibility of handling both important semantic frames inside
the instance as well as discriminative boundary frames. Consider the groundtruth action of “Jump”
in Fig. 1, segment-based action detectors mainly produce two kinds of error predictions, as in type
S1 and type S2. S1 successfully predicts the correct action category with an incomplete segment
of action highlights, whereas S2 does a better job in locating the boundaries yet get misclassified
as “Sit” due to the inclusion of confusing frames. In addition, most action detectors [47, 31, 25]
are inadequate in processing sampled frames and classifying fine-grained action classes. They often
exploit temporal context modeling at a single level and ignore the exploration of channel semantics.

To address the above issues, we present PointTAD, a sparse query-based action detector that lever-
ages learnable query points to flexibly attend important frames for action instances. Inspired by
RepPoints [45], the query points are directly supervised by regression loss. Given specific regression
targets, the query points learn to locate at discriminative frames at action boundaries as well as
semantic key frames within actions. Hence, concurrent actions of different categories can yield dis-
tinctive features through the specific arrangement of query points. Moreover, we improve the action
localization and semantics decoding by proposing the Multi-level Interactive Module with dynamic
kernels based on query vector. Direct interpolation or pooling at each query point lacks temporal
reasoning over consecutive frames. Following deformable DETR [53], we extract point-level features
with deformable convolution [6, 52] from a local snippet to capture the temporal cues of action
change or important movement. At instance-level, both temporal context and channel semantics are
captured with frame-wise and channel-wise dynamic mixing [35, 11] to further decode the distinctive
features of simultaneous actions.

PointTAD streamlines end-to-end TAD with joint optimization of the backbone network and action
decoder without any post-processing technique. We validate our model on two challenging multi-
label TAD benchmarks. Our model achieves the state-of-the-art detection-mAP performance and
competitive segmentation-mAP performance to previous methods with RGB input.

2 Related Work

Multi-label temporal action detection. Multi-label temporal action detection has been studied as a
multi-label frame-wise classification problem in the previous literature. Early methods [29, 30] paid
a lot of attention on modeling the temporal relations between frames with the help of Gaussian filters
in temporal dimension. Other works integrated features at different temporal scales with dilated
temporal kernels [9] or iterative convolution-attention pairs [8]. Recently, attention has shifted beyond
temporal modeling. Coarse-Fine [16] handled different temporal resolutions in the slow-fast fashion
and performed spatial-temporal attention during fusion. MLAD [38] used multi-head self-attention
blocks at both spatial and class dimension to model class relations at each timestamp. In our proposed
method, we view the task as a instance-level detection problem and employ query-based framework
with sparse temporal points for accurate action detection. In addition, we study the temporal context
at different semantic levels, including inter-proposal, intra-proposal and point-level of modeling.

2

Segment-based representation. Following the prevailing practice of bounding boxes [20, 13, 32, 1]
in object detection, existing temporal action detectors incorporated action segments heavily with
three kinds of usage: as anchors, as intermediate proposals, and as final predictions. Segments as
anchors are explored mainly in anchor-based frameworks. These methods [28, 26, 47, 31] used
sliding windows or pre-computed proposals as anchors. Most TAD methods [47, 19, 43, 4, 50, 49]
use segments as intermediate proposals. Uniform sampling or pooling are commonly used to extract
features from these segments. P-GCN [47] applied max-pooling within local segments for proposal
features. G-TAD [43] uniformly divided segments into bins and average-pooled each bin to obtain
proposal features. AFSD [19] proposed boundary pooling in boundary region to refine action feature.
Segments as final predictions are employed among all TAD frameworks, because segments generally
facilitate the computation of action overlaps and loss functions. Instead, in this paper, we do not
need segments as anchors and directly employ learnable query points as intermediate proposals with
iterative refinement. The learnable query points represent the important frames within action and
action feature is extracted only from these keyframes rather than using RoI pooling.

Point-based representation. Several existing works have used point representations to describe
keyframes [12, 37], objects [45, 11], tracks [51], and actions [18]. [12, 37] tackled keyframe selection
by operating greedy algorithm on spatial SIFT keypoints [12] or clustering on local extremes of image
color/intensity [37]. These methods followed a bottom-up strategy to choose keyframes based on
local cues. In contrast, PointTAD represents action as a set of temporal points (keyframes). We follow
RepPoints [45] to handle the important frames of actions with point representations and refine these
points by action feature iteratively. Our method directly regresses keyframes from query vectors in a
top-down manner for more flexible temporal action detection. Note that PointTAD tackles different
tasks from RepPoints [45]. We also built PointTAD upon a query-based detector, where a small set of
action queries is employed to sparsely attend the frame sequence for potential actions, resulting in an
efficient detection framework.

Temporal context in videos. Context aggregation at different levels of semantics is crucial for
temporal action modeling [39] and has been discussed in previous TAD methods. G-TAD [43] treated
each snippet input as graph node and applied graph convolution networks to enhance snippet-level
features with global context. ContextLoc [54] handled action semantics in hierarchy: it updated
snippet features with global context, obtained proposal features with frame-wise dynamic modeling
within each proposal and modeled the inter-proposal relations with GCNs. Although we considered
the same levels of semantic modeling, our method is different from ContextLoc. PointTAD focuses
on aggregating temporal cues at multiple levels, with deformable convolution at point-level as well
as frame and channel attentions at intra-proposal level. We also apply multi-head self-attention for
inter-proposal relation modeling.

3 PointTAD

We formulate the task of multi-label temporal action detection (TAD) as a set prediction problem.
Formally, given a video clip with T consecutive frames, we predict a set of action instances Ψ =

{ψn = (tsn, t
e
n, cn)}

Nq

n=1, Nq is the number of learnable queries, tsn, t
e
n are the starting and ending

timestamp of the n-th detected instance, cn is its action category. The groundtruth action set to detect
are denoted Ψ̂ = {ψ̂n = (t̂sn, t̂

e
n, ĉn)}

Ng

n=1, where t̂sn, t̂en are the starting and ending timestamp of the
n-th action, ĉn is the groundtruth action category, Ng is the number of groundtruth actions.

The overall architecture of PointTAD is depicted in Fig. 2. PointTAD consists of a video encoder and
an action decoder. The model takes three inputs for each sample: RGB frame sequence of length
T , a set of learnable query points P = {Pi}

Nq

i=1, and query vectors q ∈ RNq×D. Learnable query
points explicitly describe the action locations by positioning themselves around action boundaries and
semantic key frames, and the query vectors decode action semantics and locations from the sampled
features. In the model, the video encoder extracts video features X ∈ RT×D from RGB frames. The
action decoder contains L stacked decoder layers and takes query points P, query vectors q and
video features X as input. Each decoder layer contains two parts: 1) the multi-head self-attention
block models the pair-wise relationship of query vectors and establishes inter-proposal modeling for
action detection; 2) the Multi-level Interactive Module models the point-level and instance-level
semantics with dynamic weights based on query vector. Overall, the action decoder aggregates the
temporal context at point-level, intra-proposal level and inter-proposal level. Finally, we use two

3

Multi-level
Interactive
Module

MHSA

Video
Encoder

x L

Query Points:

Nq x Ns
Query Vectors：

 Nq x D

Updated Query Points:

Nq x Ns
Updated Query Vectors：

 Nq x D

Offsets: Nq x Ns

FFN

Transform

FFN

Video features: T x D

Class: Nq x C

Proposals: Nq x 2

RGB frame sequence

Class Scores: T * C

Action Decoder

Figure 2: Pipeline of PointTAD. It consists of a backbone network that extracts video features
from consecutive RGB frames and an action decoder of L layers that directly decodes actions from
video features. PointTAD enables end-to-end training of backbone and action decoder without any
post-processing of predictions.

linear projection heads to decode action labels from query vectors, and transform query points to
detection outputs.

3.1 Video Encoder

We use the I3D backbone [3] as the video encoder in our framework. The video encoder is trained
end-to-end with the action decoder and optimized by action detection loss to bridge the domain gap
between action recognition and detection. For easy deployment of our framework in practice, we
avoid the usage of optical flow due to its cumbersome preparation procedure. In order to achieve good
performance on par with two-stream features by only using RGB input, we follow [44] to remove the
temporal pooling at Mixed_5c and fuse the features from Mixed_5c with features from Mixed_4f
as in [24]. As a result, the temporal stride of encoded video features is 4. Spatial average pooling is
performed to squeeze the spatiotemporal representations from backbone to temporal features.

3.2 Learnable Query Points

Segment-based action representation (i.e., representing each action instance simply with a starting
and ending time) is limited in describing its boundary and content at the same time. To increase
the representation flexibility, we present a novel point-based representation to automatically learn
the positions of action boundary as well as its semantic key frames inside the instance. Specifically,
the point-based representation is denoted by P = {tj}Ns

j=1 for each query, where tj is the temporal
location of jth query point, and the point quantity per query is Ns and set to 21 empirically. We
explain the updating strategy and the learning of query points below.

Iterative point refinement. During training, the query points are initially placed at the midpoint of
the input video clip. Then, they are refined by query vectors q through iterations of decoder layers to
reach final positions. To be specific, at each decoder layer, the query point offsets are predicted from
updated query vector (see Sec. 3.3) by linear projection. We design a self-paced updating strategy
with adaptive scaling for each query at each layer to stabilize the training process. At decoder layer
l, the query points for one query are represented by P l = {tlj}

Ns
j=1. The Ns offsets are denoted

{∆tlj}
Ns
j=1. The refinement can be summarized as:

P l+1 = {(tlj +∆tlj · sl · 0.5)}
Ns
j=1, (1)

where sl = max({tlj})−min({tlj}) is the scaling parameter and describes the span of query points
at layer l. As a result, the updated step size gets smaller for shorter action, which helps with the
localization of short actions. Updated query points from previous layer are inputs to the next layer.

Learning query points. The training of query points is directly supervised by regression loss at
both intermediate and final stages. We follow [45] to transform query points to pseudo segments for
regression loss calculation. The resulted pseudo segments participate in the calculation of L1-loss
and tIoU loss with groundtruth action segments in both label assignment and loss computation.

The transformation function is denoted by T : P → S = (ts, te). We experiment with two kinds
of functions: Min-max T1 and Partial min-max T2. Min-max is to take the minimum and maximum

4

Linear
w/ params

D channels

Channel Mixing

Linear
w/ params

Frame Mixing

Linear LN & ReLU

T
Linear

Concat

T

Flatten &
Linear

Query Vector:
1 x D

LN & ReLU

Residual
connection

D
ef

or
m

ab
le

C
on

v.

Q
ue

ry
 P

oi
nt

s:
 N
s

x
1

Point-Level Instance-Level

N
s

po
in

ts

Linear

Figure 3: Multi-level Interactive Module aggregates action semantics at point-level and instance-
level with dynamic parameters.

location from the set of query points as the starting and ending timestamp of the pseudo segment,
T1 : P → min({tj}j∈P),max({tj}j∈P). With Min-max transformation, the query points are
strictly bounded within the local segment of the target action instance. Partial min-max function is
to select a subset of query points Plocal and perform the min-max function on them to determine a
pseudo segment, T2 : P → min({tj}j∈Plocal

),max({tj}j∈Plocal
). It allows several query points to

aggregate information from outside the action. Empirically, we choose partial min-max by default.
For each query, we randomly take 2

3Ns points from the query point set to form Plocal.

3.3 Multi-level Interactive Module

Apart from the limitation in the segment-based representation, previous temporal action detectors
are also insufficient in decoding the sampled frames. These methods seldom consider semantic
aggregation from different levels and at multiple aspects. Accordingly, we present a multi-level
interactive module that consider both local temporal cues at point-level and intra-proposal relation
modeling at instance-level, depicted in Fig. 3. To achieve distinct representations for each query,
these parameters at both levels are dynamically generated based on the query vector.

Point-level local deformation. Paired with the refined point representation, we employ deformable
convolutions to extract point features within the local neighborhood. For the jth query point, we
predict four temporal offsets {ok}4k=1 from the point location and corresponding weights {wk}4k=1.
The query point at frame tj acts as the center point and is added with temporal offsets to achieve
four deformable sub-points. These sub-points characterize the local neighborhood of center points.
The features at sub-points are extracted by bilinear interpolation, then multiplied with weights and
combined together to get point-level feature x(j). This process can be expressed as:

x(j) =
4∑

k=1

X(tj + ok) · wk. (2)

Both the offsets and weights are generated from query vectors q by linear projection,

o = Linear(q) ∈ RNq×4, w = Softmax(Linear(q)) ∈ RNq×4, (3)

where the weights are additionally normalized by softmax for each query.

Instance-level adaptive mixing. Faced with the challenge of simultaneous actions, with only
temporal modeling, actions with large overlap may result in similar representation and harms the
classification. To tackle this problem, we propose adaptive mixing at both frames and channels
by using dynamic convolutions. Specifically, the stacked features of query points is denoted by
x ∈ RNs×D. Given the query vector q, we generate dynamic parameters for frame mixing and
channel mixing:

Mf = Linear(q) ∈ RNs×Ns , (4)

Mc,1 = Linear(q) ∈ RD×D′
, (5)

Mc,2 = Linear(q) ∈ RD′×D. (6)

5

Frame mixing is carried out with dynamic projection followed by LayerNorm and ReLU activation
on Ns points to explore intra-proposal frame relations:

xf = ReLU(LayerNorm(xTMf)) ∈ RD×Ns . (7)

Similar to frame mixing, channel mixing uses two bottle-necked layers of dynamic projection on the
channel dimension to enhance action semantics:

xc = ReLU(LayerNorm(ReLU(LayerNorm(xMc,1))Mc,2)) ∈ RNs×D. (8)

These two mixed features are concatenated along channel and squeezed by linear operations to the
size of query vector. The query vector ql at the lth layer is then updated with residual connection:

ql+1 = ql + Linear(Concat(xTf , xc)). (9)

Finally, the query point offsets and the action labels are decoded from the updated vector by two
linear projection heads to produce detection results at each layer.

3.4 Training and Inference

Label assignment. Similar to all query-based detectors [2, 53, 11, 36], we apply hungarian matcher
on (detected) pseudo segments to search for the optimal permutation σ(·) for label assignment. The
groundtruth set Ψ̂ on each video clip is extended with no action ∅ to the size of Nq. The matching
cost is formulated as:

C =
∑

n:σ(n)̸=∅

αL1 · LL1(T (Pn), ψ̂σ(n))− αiou · tIoU(T (Pn), ψ̂σ(n))− αcls · cn. (10)

By minimizing the matching cost, the bipartite matching algorithm finds the optimal permutation
σ∗(·) that assigns each prediction with a target. αL1, αiou, αcls is set to 5, 5, 10 respectively.

Loss functions. PointTAD is jointly optimized by localization loss and classification loss. We use L1

loss and iou loss as localization loss:

Lloc =
∑

n:σ∗(n)̸=∅

LL1(T (Pn), ψ̂σ∗(n)) + (1− tIoU(T (Pn), ψ̂σ∗(n))). (11)

The cross-entropy loss between query labels and target labels is used as classification loss. In
addition, to improve the performance under segmentation-mAP, we generate dense classification
scores S ∈ RT×C by linear projection from video features X . Cross-entropy loss is enforced on
S with dense groundtruth Ŝ ∈ RT×C . Therefore, the classification loss is composed of the set
prediction loss and the dense per-frame loss:

Lcls =
∑
n

Lce(cn, ĉσ∗(n)) + λsegLce(S, Ŝ). (12)

The overall loss function is formulated as follows:

L = λloc · Lloc + λcls · Lcls. (13)

λcls, λloc and λseg are hyper-parameters that are set to 10, 5, 1 respectively.

Inference. During inference, our PointTAD uses a single linear projection layer followed by
LayerNorm and ReLU activation to predict class labels from query vectors. As for localization, we
use pseudo segments transformed from query points as the final predictions. These sparse predictions
are then evaluated under the detection-mAP metric. Additional dense scores S could be generated
at video features for the segmentation-mAP calculation. The sparse predictions are filtered with
threshold γ and processed with Gaussian kernels to approximate dense scores at each frame. Then,
the approximated scores are added with weight β to the predicted dense scores for segmentation-mAP
calculation. The final dense scores are generated as:

Sfinal = β ·
Nq∑
n=1

1cn>γ ·Gaussian(ψn) + (1− β) · S. (14)

Note that the sparse predictions are adjusted by dense scores only for segmentation-mAP.

6

Table 1: Comparison with the state of the art on the MultiTHUMOS test set and Charades test set,
under detection-mAP (%) and segmentation-mAP(%).

Methods Modality MultiTHUMOS Charades

Det-mAP Seg-mAP Det-mAP Seg-mAP

R-C3D [42] RGB - - - 17.6
Super-event [29] RGB - 36.4 - 18.6

TGM [30] RGB - 37.2 - 20.6
TGM [30] RGB+OF - 44.3 - 21.5
PDAN [9] RGB 17.3/17.1‡ 40.2 8.5 23.7

Coarse-Fine [16] RGB - - 6.1 25.1
MLAD [38] RGB 14.2/13.9‡ 42.2 - 18.4
MLAD [38] RGB+OF - 51.5 - 23.7
CTRN [7] RGB - 44.0 - 25.3
CTRN [7] RGB+OF - 51.2 - 27.8
AGT [27] RGB+OF - - - 28.6

MS-TCT [8] RGB 16.2/16.0‡ 43.1 7.9 25.4

Ours RGB 21.5/21.4‡ 39.8 11.1 21.0
Ours§ RGB 23.5/23.4‡ 41.2 12.1 22.1

‡ indicates detection results excluding NoHuman class. §indicates results trained with stronger image augmen-
tation as in [24].

4 Experiments

4.1 Datasets and Setup

Datasets. We conduct experiments on two popular multi-label action detection benchmarks: Mul-
tiTHUMOS [46] and Charades [33]. MultiTHUMOS is a densely labeled dataset extended from
THUMOS14. It includes 413 sports videos of 65 classes. The average number of distinctive action
categories per video in MultiTHUMOS is 10.5, compared with 1.1 in THUMOS14. Charades is a
large Multi-label TAD dataset that contains 9848 videos of daily in-door activities. The annotations
are spread over 157 action classes, with an average of 6.8 instances per video.

Implementation details. With I3D backbone network, we extract frames at 10 fps for MultiTHU-
MOS and 12 fps for Charades. The spatial resolution is set to 1922 for both datasets. We report
ablations with only Center_Crop for training, and report comparison in Tab. 1 with stronger image
augmentation following [24]. The video sequence is pre-processed with sliding window mechanism.
To accommodate most of the actions, the window size is set to 256 frames for MultiTHUMOS (99.1%
actions included), and 400 frames for Charades (97.3% actions included). The overlap ratio is 0.75 at
training, and 0 at inference. Nq is set to 48 for both benchmarks. The number of query points per
query Ns is 21. The number of deformable sub-points is set to 4 according to the number of sampling
points in TadTR [25]. The optimal γ is 0.01 for both datasets.

Appropriate initialization is required for backbone, query points and point-level deformable con-
volutions for stable training. Following common practice, the I3D backbone are initialized with
Kinetics400 [17] pre-trained weights for MultiTHUMOS and Charades pre-trained weights for Cha-
rades. Query points are initialized with constant 0.5 in training and with learned weights in inference.
Other possible initializations are explored in ablations. The linear layer to produce deformable offsets
are initialized as follows: zeroing for weights and [1, 2, 3, 4] for biases. The weights and biases to
generate deformable weights are initialized as zero.

We adopt AdamW as optimizer with 1e-4 weight decay. The network is trained on a server with 8
V100 GPUs. The batch size is 3 per GPU for MultiTHUMOS and 2 per GPU for Charades. The
learning rate is set to 2e-4 and drops by half at every 10 epochs. Backbone learning rate is additionally
multiplied with 0.1 for stable training.

Evaluation metrics. The default evaluation metric for multi-label TAD is segmentation-mAP, which
is the frame-wise mAP. In addition, we extend the detection-mAP metric from traditional TAD to
further evaluate the completeness of predicted action instances. The detection-mAP is the instance-
wise mAP of action predictions under different tIoU thresholds. We report the average mAP as
well as mAPs at tIoU threshold set {0.2, 0.5, 0.7} for both datasets. The average detection-mAP is

7

Table 2: PointTAD Ablation experiments on MultiTHUMOS. Default setting is colored gray .

(a) Segments vs. Query Points in
query-based action detectors

0.2 0.5 0.7 Avg

Segment 33.1 20.1 9.8 19.4
Point 36.6 22.8 10.6 21.5

(b) Initialization of query points at
training.

Init. 0.2 0.5 0.7 Avg

Uniform(0,1) 36.9 22.6 10.0 21.3
Norm(0.5,0.3) 37.0 21.9 9.4 21.2

Const.(0.5) 36.6 22.8 10.6 21.5

(c) Point2Segment Transforma-
tion T : P → S .

T 0.2 0.5 0.7 Avg

Min-max 36.5 22.9 10.9 21.6
Partial

Min-max
36.6 22.8 10.6 21.5

(d) Number of Query Points Ns

per query.

Ns 0.2 0.5 0.7 Avg

9 36.2 22.3 10.3 21.0
15 36.6 22.8 10.4 21.4
21 36.6 22.8 10.6 21.5
27 36.6 22.6 10.6 21.4

(e) Point-Level: Deformable Con-
volution.

Deform. 0.2 0.5 0.7 Avg
Conv.

✓ 36.6 22.8 10.6 21.5
35.7 22.1 9.9 20.8

(f) Instance-Level: different vari-
ants of mixing strategy.

Mixing 0.2 0.5 0.7 Avg

Frame Only 35.7 22.3 10.2 20.9
Channel Only 34.2 21.4 9.8 20.1

Frame→Channel 34.3 21.4 9.2 19.9
Channel→Frame 30.7 17.6 6.7 17.1
Parallel Mixing 36.6 22.8 10.6 21.5

calculated with tIoU thresholds set [0.1 : 0.1 : 0.9]. We argue that detection-mAP is more reasonable
for an instance detection task.

4.2 Comparison with the State-of-the-Art Methods

In Tab. 1, we compare the performance of PointTAD with previous multi-label TAD methods under
both segmentation-mAP and detection-mAP. The sparse prediction tuples of PointTAD are converted
to dense segmentation scores with Eq. (14) for segmentation-mAP. In order to compare the detection-
mAP, we reproduce several previous multi-label temporal action localization methods and convert
their dense segmentation results to sparse predictions following [46]. The prediction confidence score
of an action with Lf consecutive frames is calculated as:

score(C, p1...pLf
) = (

Lf∑
i=1

pi)× exp(
−0.01(Lf − µC)

2

σ2
C

), (15)

where pi is the probability for class c at frame i, µC and σC is the mean and standard derivation of
action duration of class C in the training set.

Our PointTAD surpasses all previous multi-label TAD methods by a large margin under detection-
mAP, indicating our ability to predict complete actions is beyond previous dense segmentation
models. As for segmentation-mAP, we achieve encouraging and comparable results to the previous
methods on both benchmarks with a sparse detection framework.

00:00 00:05 00:10 00:15 00:20 00:25 00:30
Time

Run

Soccer
Penalty

NoHuman

Fall

Walk

Groundtruth
Ours

Segment-based baseline
MS-TCT

PDAN

Figure 4: Qualitative results on the Multi-
THUMOS test set.

In Fig. 4, we show the qualitative results of PointTAD
on the MultiTHUMOS test set compared to the segment-
based baseline, PDAN [9] and MS-TCT [8]. PointTAD
detects more instances at harder categories, such as “Fall”
and “SoccerPenalty”. MS-TCT and PDAN perform better
at “NoHuman” category. We argue that this is because
“NoHuman” class is not a well-defined action category with
precise paired action boundaries, whereas PointTAD have
to leverage pair relations of boundaries for localization.

4.3 Ablation Study

Segment-based representation vs point-based representation. In Tab. 2a, we compare the perfor-
mance between segment-based representation and point-based representation. In the segment-based
baseline, actions are represented by segments of paired start-end timestamps. We apply temporal RoI
align to the segments as in [41, 49] to retrieve action features. Temporal RoI align divides segments
into uniform bins and apply average pooling on each bin to transform frame features for query vector
mixing. For fair comparison, the number of bins in RoI align is set to Ns and the parallel dynamic

8

Table 3: Ablation study w.r.t. fusion parameter β and scaling parameter s on MultiTHUMOS.

(a) Result fusion parameter β: 1 indicates full sparse
detection and 0 indicates full dense results. The results
are reported under segmentation-mAP.

β 0 0.2 0.4 0.6 0.8 0.96 1

MultiTHUMOS 33.0 39.8 39.2 38.1 37.3 36.8 35.9
Charades 13.8 14.3 15.1 16.6 19.2 21.0 18.7

(b) Offset scaling parameter s: scale to win-
dow size vs. scale to action duration. The re-
sults are reported under detection-mAP@tIoU.

s 0.2 0.5 0.7 Avg

scale to clip duration 36.4 21.9 9.8 21.0
scale to action duration 36.6 22.8 10.6 21.5

mixing is applied to both implementations. Results show that point-based representation significantly
outperforms segment-based representation, demonstrating the advantage of adaptive sampling based
on temporal points over grid alignment based on segments.

Study on query point initialization. We consider three different initialization for query points
in training: uniform distribution in [0, 1], normal distribution with mean=0.5 and std = 0.3, and
initialization with constant 0.5. Results in Tab. 2b indicates that all three initialization methods are
beneficial for the training, with little performance gap in avg-mAP. In addition, normal distribution
and uniform distribution achieve higher detection-mAP with lower tIoU threshold, which shows
these two initialization methods are weaker at accurate localization under higher tIoU threshold.
Empirically, we set constant initialization by default.

Study on pseudo segment transformation functions. Tab. 2c shows two alternatives of trans-
formation function T . Min-max and Partial min-max achieve similar performance under average
detection-mAP. We choose Partial min-max as the default function because it offers a more relaxed
constraint for query points with higher flexibility.

Study on the number of query points. We ablate with different numbers of query points Ns in
Tab. 2d. In general, the performance is in proportion to the point quantity, although the increase of
Ns only benefits the performance a little. Ns reaches the sweet spot at 21, where the performance no
longer increases with larger Ns. To balance the model complexity and performance, we set Ns to 21.

Study on point-level deformation. In Tab. 2e, we compare point-level deformable convolution and
direct interpolation for point-level feature extraction. Using deformable operator achieves higher
performance than direct interpolation at query point location, demonstrating that it is beneficial to
consider local context with dynamic modeling in action detection.

Study on instance-level mixing. The effect of frame-wise and channel-wise mixing is studied
in Tab. 2f. We first ablate with the single application of each mixing, i.e. frame-only or channel-
only. Results show that the performance degrades more without frame mixing, demonstrating the
importance of frame mixing over channel mixing in multi-label TAD. Furthermore, we explore
different combinations of frame and channel mixing with two cascaded alternatives, i.e. frame
mixing → channel mixing and channel mixing → frame mixing. Tab. 2f shows that compared with
frame-only and channel-only performances respectively, cascaded designs backfire at the performance
with a decrease of 1% avg-mAP at frame → channel and 3% avg-mAP at channel → frame. To tackle
action detection in video domain, intra-proposal channel mixing does not help with subsequent frame
mixing and vice versa.

Study on the result fusion parameter β. Combining sparse detection results with dense segmen-
tation scores provides smoother frame-level scores for segmentation-mAP. We ablate with choices
of β on both datasets in Tab. 3a. β is set to 0.2 for MultiTHUMOS and 0.96 for Charades based on
empirical results.

Study on the offset scaling parameter s. This scaling parameter is conventional in box-based object
detectors [32, 1, 35], which is to scale regression offsets with respect to the box size instead of the
image size. We extend this design to our PointTAD. In Tab. 3b, we compare the regression offsets
predicted with respect to action duration (a.k.a offset scaled by duration) and with respect to clip
duration (offset without scaling) on MultiTHUMOS. The result demonstrates the effectiveness of this
scaling strategy on point-based detectors.

9

run

Figure 5: Visualization of learned query points and the corresponding action groundtruth on a
sample from MultiTHUMOS.

4.4 Query Points Visualization
Fig. 5 illustrates the learned query points and the corresponding action target on a sample from
MultiTHUMOS. Partial mix-max transformation divides the query points into confined local points
(blue) and open-ended global points (orange). Local points are learned to attend action boundaries
with two extreme points and semantic key frames with interior points. Global points sparsely
distribute over the entire video for global context. Specifically, we observe that the interior local
points effectively capture the most distinguished characteristic of target action “Run”, by capturing
rapid forward movement of both legs and neglecting frames of similar yet disruptive movements:
hopping and scoring. Moreover, the iterative refining process of query points are depicted from initial
positions to the final positions in the last decoder layer. Query points are learned to kick off from
the median position in the window. After the first decoder layer, the query points are already able to
coarsely locate the action target. Then, these query points automatically converge to finer localization
along the decoder layers.

5 Limitations and Future Work
PointTAD is proposed to solve the complex problem of multi-label TAD, by leveraging learnable
query points for flexible and distinct action representation. Currently, we validate our model on
two popular multi-label TAD benchmarks which include sport events and daily indoor activities.
PointTAD achieves superior performance to all previous multi-label TAD methods as well as the
state-of-the-art single-label TAD methods under detection-mAP metric. We have not demonstrated
our model’s ability in general action detection in more diverse scenarios, including important tasks
such as action spotting, sentence grounding, and so on. In the future, we would continue to explore the
advantages of point-based action representation in broader scope for video understanding. Meanwhile,
our PointTAD training still relies on the intermediate supervision and we hope to design more effective
training paradigm for the query-based detection pipeline.

6 Conclusion
In this paper, we have studied the complex multi-label TAD that aims to detect all actions from a
multi-label untrimmed video. We formulate this problem as a sparse detection task and extend the
traditional query-based action detection framework from single-label TAD. Faced with the challenge
of concurrent instances and complex action relations in multi-label TAD, we introduce a set of
learnable query points to effectively capture action boundaries and characterize action semantics for
fine-grained action modeling Moreover, to facilitate the decoding process, we propose the Multi-
level Interactive Module that integrates action semantics at both point level and instance level, by
using dynamic kernels based on query vector. Finally, PointTAD yields an end-to-end trainable
architecture by using only RGB inputs for easy deployment in practice. Our PointTAD surpasses all
previous methods by a large margin under the detection-mAP and achieves promising results under
the segmentation-mAP on two popular multi-label TAD benchmarks.

Acknowledgments and Disclosure of Funding

This work is supported by National Natural Science Foundation of China (No. 62076119, No.
61921006), the Fundamental Research Funds for the Central Universities (No. 020214380091), and
Collaborative Innovation Center of Novel Software Technology and Industrialization.

10

References
[1] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: delving into high quality object detection. In CVPR,

pages 6154–6162, 2018.
[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey

Zagoruyko. End-to-end object detection with transformers. In ECCV, pages 213–229, 2020.
[3] João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the kinetics dataset.

In CVPR, pages 4724–4733, 2017.
[4] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A. Ross, Jia Deng, and Rahul

Sukthankar. Rethinking the faster R-CNN architecture for temporal action localization. In CVPR, pages
1130–1139, 2018.

[5] Guo Chen, Yin-Dong Zheng, Limin Wang, and Tong Lu. DCAN: improving temporal action detection via
dual context aggregation. In AAAI, pages 248–257, 2022.

[6] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In ICCV, pages 764–773, 2017.

[7] Rui Dai, Srijan Das, and François Brémond. CTRN: class-temporal relational network for action detection.
In BMVC, page 224, 2021.

[8] Rui Dai, Srijan Das, Kumara Kahatapitiya, Michael S. Ryoo, and François Brémond. MS-TCT: multi-scale
temporal convtransformer for action detection. In CVPR, pages 20009–20019, 2022.

[9] Rui Dai, Srijan Das, Luca Minciullo, Lorenzo Garattoni, Gianpiero Francesca, and François Brémond.
PDAN: pyramid dilated attention network for action detection. In WACV, pages 2969–2978, 2021.

[10] Jialin Gao, Zhixiang Shi, Guanshuo Wang, Jiani Li, Yufeng Yuan, Shiming Ge, and Xi Zhou. Accurate
temporal action proposal generation with relation-aware pyramid network. In AAAI, 2020.

[11] Ziteng Gao, Limin Wang, Bing Han, and Sheng Guo. AdaMixer: A fast-converging query-based object
detector. In CVPR, pages 5374–5373, 2022.

[12] Genliang Guan, Zhiyong Wang, Shiyang Lu, Jeremiah Da Deng, and David Dagan Feng. Keypoint-based
keyframe selection. IEEE Trans. Circuits Syst. Video Technol., 23(4):729–734, 2013.

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. IEEE Trans. Pattern
Anal. Mach. Intell., 42(2):386–397, 2020.

[14] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet: A
large-scale video benchmark for human activity understanding. In CVPR, pages 961–970, 2015.

[15] Haroon Idrees, Amir Roshan Zamir, Yu-Gang Jiang, Alex Gorban, Ivan Laptev, Rahul Sukthankar, and
Mubarak Shah. The THUMOS challenge on action recognition for videos "in the wild". Comput. Vis.
Image Underst., 155:1–23, 2017.

[16] Kumara Kahatapitiya and Michael S. Ryoo. Coarse-fine networks for temporal activity detection in videos.
In CVPR, pages 8385–8394, 2021.

[17] Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The
kinetics human action video dataset. CoRR, abs/1705.06950, 2017.

[18] Yixuan Li, Zixu Wang, Limin Wang, and Gangshan Wu. Actions as moving points. In ECCV, 2020.
[19] Chuming Lin, Chengming Xu, Donghao Luo, Yabiao Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue

Huang, and Yanwei Fu. Learning salient boundary feature for anchor-free temporal action localization. In
CVPR, pages 3320–3329, 2021.

[20] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie.
Feature pyramid networks for object detection. In CVPR, pages 936–944, 2017.

[21] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen. BMN: boundary-matching network for
temporal action proposal generation. In ICCV, pages 3888–3897, 2019.

[22] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, pages 740–755, 2014.

[23] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and Ming Yang. BSN: boundary sensitive network
for temporal action proposal generation. In ECCV, pages 3–21, 2018.

[24] Xiaolong Liu, Song Bai, and Xiang Bai. An empirical study of end-to-end temporal action detection. In
CVPR, pages 20010–20019, 2022.

[25] Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, and Xiang Bai. End-to-end temporal action
detection with transformer. IEEE Transactions on Image Processing, 31:5427–5441, 2022.

[26] Pascal Mettes, Jan C. van Gemert, Spencer Cappallo, Thomas Mensink, and Cees G. M. Snoek. Bag-of-
fragments: Selecting and encoding video fragments for event detection and recounting. In ICMR, pages
427–434, 2015.

[27] Megha Nawhal and Greg Mori. Activity graph transformer for temporal action localization. CoRR,
abs/2101.08540, 2021.

[28] Dan Oneata, Jakob Verbeek, and Cordelia Schmid. Action and event recognition with fisher vectors on a
compact feature set. In ICCV, pages 1817–1824, 2013.

11

[29] A. J. Piergiovanni and Michael S. Ryoo. Learning latent super-events to detect multiple activities in videos.
In CVPR, pages 5304–5313, 2018.

[30] A. J. Piergiovanni and Michael S. Ryoo. Temporal gaussian mixture layer for videos. In ICML, pages
5152–5161, 2019.

[31] Zhiwu Qing, Haisheng Su, Weihao Gan, Dongliang Wang, Wei Wu, Xiang Wang, Yu Qiao, Junjie Yan,
Changxin Gao, and Nong Sang. Temporal context aggregation network for temporal action proposal
refinement. In CVPR, pages 485–494, 2021.

[32] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. In NIPS, pages 91–99, 2015.

[33] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta. Holly-
wood in homes: Crowdsourcing data collection for activity understanding. In ECCV, 2016.

[34] Haisheng Su, Weihao Gan, Wei Wu, Yu Qiao, and Junjie Yan. BSN++: complementary boundary regressor
with scale-balanced relation modeling for temporal action proposal generation. In AAAI, 2021.

[35] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li,
Zehuan Yuan, Changhu Wang, and Ping Luo. Sparse R-CNN: end-to-end object detection with learnable
proposals. In CVPR, pages 14454–14463, 2021.

[36] Jing Tan, Jiaqi Tang, Limin Wang, and Gangshan Wu. Relaxed transformer decoders for direct action
proposal generation. In ICCV, pages 13506–13515, 2021.

[37] Hao Tang, Hong Liu, Wei Xiao, and Nicu Sebe. Fast and robust dynamic hand gesture recognition via key
frames extraction and feature fusion. Neurocomputing, 331:424–433, 2019.

[38] Praveen Tirupattur, Kevin Duarte, Yogesh S. Rawat, and Mubarak Shah. Modeling multi-label action
dependencies for temporal action localization. In CVPR, pages 1460–1470, 2021.

[39] Limin Wang, Zhan Tong, Bin Ji, and Gangshan Wu. TDN: temporal difference networks for efficient
action recognition. In CVPR, pages 1895–1904, 2021.

[40] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool. UntrimmedNets for weakly supervised action
recognition and detection. In CVPR, pages 6402–6411, 2017.

[41] Jiannan Wu, Peize Sun, Shoufa Chen, Jiewen Yang, Zihao Qi, Lan Ma, and Ping Luo. Towards high-quality
temporal action detection with sparse proposals. CoRR, abs/2109.08847, 2021.

[42] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: region convolutional 3d network for temporal activity
detection. In ICCV, pages 5794–5803, 2017.

[43] Mengmeng Xu, Chen Zhao, David S. Rojas, Ali K. Thabet, and Bernard Ghanem. G-TAD: sub-graph
localization for temporal action detection. In CVPR, pages 10153–10162, 2020.

[44] Min Yang, Guo Chen, Yin-Dong Zheng, Tong Lu, and Limin Wang. BasicTAD: an astounding rgb-only
baseline for temporal action detection. CoRR, abs/2205.02717, 2022.

[45] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin. Reppoints: Point set representation for
object detection. In ICCV, pages 9656–9665, 2019.

[46] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori, and Li Fei-Fei. Every
moment counts: Dense detailed labeling of actions in complex videos. Int. J. Comput. Vis., 126(2-4):375–
389, 2018.

[47] Runhao Zeng, Wenbing Huang, Chuang Gan, Mingkui Tan, Yu Rong, Peilin Zhao, and Junzhou Huang.
Graph convolutional networks for temporal action localization. In ICCV, pages 7093–7102, 2019.

[48] Hang Zhao, Antonio Torralba, Lorenzo Torresani, and Zhicheng Yan. HACS: human action clips and
segments dataset for recognition and temporal localization. In ICCV, pages 8667–8677, 2019.

[49] Peisen Zhao, Lingxi Xie, Chen Ju, Ya Zhang, Yanfeng Wang, and Qi Tian. Bottom-up temporal action
localization with mutual regularization. In ECCV, pages 539–555, 2020.

[50] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaoou Tang, and Dahua Lin. Temporal action
detection with structured segment networks. Int. J. Comput. Vis., 128(1):74–95, 2020.

[51] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking objects as points. In ECCV, pages
474–490, 2020.

[52] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets V2: more deformable, better
results. In CVPR, pages 9308–9316, 2019.

[53] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable DETR: deformable
transformers for end-to-end object detection. In ICLR, 2021.

[54] Zixin Zhu, Wei Tang, Le Wang, Nanning Zheng, and Gang Hua. Enriching local and global contexts for
temporal action localization. In ICCV, pages 13496–13505, 2021.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec. 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

supplementary material.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical
results.

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec. 4.1 and the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See supplementary material.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Sec. 4.1

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Sec. 4.1
(b) Did you mention the license of the assets? [Yes] See the supplementary material.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See the supplementary material for details.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The datasets we use are open datasets.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	PointTAD
	Video Encoder
	Learnable Query Points
	Multi-level Interactive Module
	Training and Inference

	Experiments
	Datasets and Setup
	Comparison with the State-of-the-Art Methods
	Ablation Study
	Query Points Visualization

	Limitations and Future Work
	Conclusion

