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A Appendix

A.1 Comparison with the State-of-the-Art Single-label TAD Methods

In this sub-section, we report the detection-mAP results of some state-of-the-art single-label TAD
methods (i.e. P-GCN [10], AFSD [1], ContextLoc [11]) reproduced on multi-label TAD task. Since
MultiTHUMOS share similar data preparation with THUMOS14, the reproductions are conducted on
MultiTHUMOS to get the best performance out of these models without additional hyper-parameter
tuning. P-GCN [10] and ContextLoc [11] are both two-staged action detector that take in proposal
generation results (e.g. BSN [2] proposals) and perform relation modeling based on coarse proposals
to refine and classify each action candidate. AFSD [1] follows FCOS [8] to employ anchor-free
architecture for TAD task. It is able to generate action detection results directly from the network,
without pre-defined anchors or external video-level class labels.

The results in Tab. A show that direct application of single-label TAD models on multi-label TAD is
deficient to achieve good detection performance, hence it is non-trivial to extend action detectors to
multi-label TAD. Our PointTAD with strong image augmentation surpasses all of these state-of-the-art
single-label TAD methods by a large margin, demonstrating the advance of our model to deal with
concurrent instances and complex action relations as an action detector.

Table A: Comparison with the state-of-the-art single-label TAD models on MultiTHUMOS test
set with under detection-mAP (%). The single-label TAD methods are reproduced with RGB input
only.

Methods 0.1 0.2 0.3 0.4 0.5 Average

BSN [2]+P-GCN [10] 22.2 20.0 16.7 12.5 8.5 10.0
BSN [2]+ContextLoc [11] 22.9 21.0 18.0 14.6 10.8 11.0

AFSD [1] 30.5 27.4 23.7 19.0 14.0 14.7

Ours 42.3 39.7 35.8 30.9 24.9 23.5

A.2 Error Bar

We follow the practice in [4] to compute the error bar for our model over 3 runs, and report the
mean and standard derivation under detection-mAP in Tab. B. The implementation with stronger
image augmentation appears to have larger derivation on MultiTHUMOS than the Center_Crop
implementation.

∗Work is done during internship at Tencent PCG. †Corresponding author.
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Table B: Error Bar on MultiTHUMOS test set and Charades test set under detection-mAP (%).

Dataset 0.1 0.2 0.3 0.4 0.5 Average

PointTAD§ MultiTHUMOS 41.16±1.08 38.57±1.04 34.96±0.80 30.34±0.61 24.85±0.30 23.10±0.34
Charades 17.71±0.41 17.05±0.38 15.98±0.39 14.74±0.28 13.20±0.25 11.92±0.23

PointTAD MultiTHUMOS 39.20±0.10 36.66±0.04 33.32±0.03 28.51±0.07 22.90±0.36 21.51±0.06
Charades 16.72±0.26 16.11±0.28 15.17±0.26 14.00±0.26 12.68±0.29 11.36±0.20

§ indicates results trained with stronger image augmentation as in [3].

A.3 Evaluation on THUMOS14

Following RTD (query-based TAD method), we use the same feature representation and place our
PointTAD head on top to build a direct TAD detector. Note that our TAD detector does not reply on
the video-level classifier for action recognition and directly produce the action labels with our own
PointTAD head. The result on the THUMOS14 dataset is reported in the Tab. C. We obtain better
performance on this single-label TAD dataset, demonstrating the generalization ability of PointTAD
to various TAD datasets.

Table C: Evaluation on standard TAD benchmark THUMOS14 under detection-mAP (%).

Methods 0.3 0.4 0.5 0.6 0.7 Average

RTD + UNet 58.5 53.1 45.1 36.4 25.0 43.6
PointTAD 62.6 55.9 46.2 35.3 22.8 44.6

A.4 Comparison with Query-based Baselines

In the ablation study of the main paper, we have shown the comparison between PointTAD and
a Sparse-RCNN based baseline (segment-based variant), which proves the effectiveness of point
representation. We have implemented another DETR based baseline on the MultiTHUMOS dataset.
The performance comparison is reported in Tab. D, and our PointTAD obtains better results thanks to
our more flexible point-based representation.

Table D: Comparison with query-based baseline under detection-mAP (%).

Methods 0.2 0.5 0.7 Avg

DETR-alike baseline 26.1 16.9 7.7 15.5
Sparse R-CNN alike baseline 33.1 20.1 9.8 19.4

PointTAD 36.6 22.8 10.6 21.5

A.5 Other Training Details

In this sub-section, we share some of our observations in building an end-to-end trainable architecture
for multi-label TAD via ablations on input image resolution and the number of decoder layers L.

Study on input image resolution. In Tab. Ea, we show the detection performance with different
input image resolution. According to [3], cropping images to 1282 is adequate to tackle single-label
TAD. However, we observe from the experiments that handling multi-label TAD requires more
spatial information to distinguish concurrent instances from different categories and 1282 image
resolution is far less sufficient to solve the task. Our detection performance improves greatly by the
increase of image resolution: from 962 to 1282 the detection-mAP improves by absolute 3.9% at
average det-mAP, from 1282 to 1602 the performance improves by absolute 1% at average det-mAP.
The performance gain slows down at larger image resolution: 0.6% gain at average det-mAP from
1602 to 1922. We settled at 1922 to balance the trade-off between memory consumption and model
performance.
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Table E: Ablation experiments w.r.t. E2E training on MultiTHUMOS. Default setting is colored
gray .

(a) Input spatial resolution: from 962 to 1922.

H ×W 0.2 0.5 0.7 Avg

96× 96 28.1 16.4 7.5 16.0
128× 128 33.8 21.3 10.1 19.9
160× 160 35.8 22.4 10.2 20.9
192× 192 36.6 22.8 10.6 21.5

(b) Number of decoder layers L.

L 0.2 0.5 0.7 Avg

3 35.1 21.7 9.0 20.2
4 36.6 22.8 10.6 21.5
5 35.9 22.6 10.2 21.1
6 Out of Memory

Study on the number of decoder layers. The choice of L is influenced by end-to-end training due
to memory consumption of video encoder. We carefully decrease L from the common setting of
L = 6, as shown in Tab. Eb. Results indicate that 4-layer and 5-layer designs are quite similar in
performance, yet from 4-layer design down, the decrease of L leads to obvious performance degrade.
Hence, L is set to 4 empirically.

A.6 Visualization

We show detailed visualizations of learnable query points of PointTAD in Fig. A. The visualizations
are conducted on the samples with concurrent actions and multiple action categories from the test
set of MultiTHUMOS (Fig. Aa) and Charades (Fig. Ab), covering different video scenarios such
as daily events and sports matches. The first row briefly visualizes RGB frames of the video. The
second row plots the temporal locations of groundtruth actions and the query points from the query
that best predicts the action. In the rest of the figure, the left column shows action frames inside the
groundtruth, where the semantic keyframes decided by the local query points are highlighted in blue.
In the right column are selected frames corresponding to global query points. From the figure, we can
see that the local query points not only learn different sets of representations for concurrent actions,
but also capture important frames that indicate the action semantics. Global query points tend to
distribute uniformly in the video clip and capture mostly close-up or background frames for sport
events, possibly in the purpose of providing supporting background information for temporal action
detection.

A.7 Societal Impacts

This paper proposes PointTAD, a solution with learnable query points to tackle multi-label TAD.
PointTAD is the first to introduce points/keyframes for segment-level video representation. Such
practice addresses the non-uniform temporal structure of videos well and could potentially drive
the development of general video understanding systems for finer point-based representation. The
potential applications include video editing, anomaly event detection, etc. PointTAD enables end-to-
end inference with raw video input, which benefits the deployment of automated online services for
batch video processing, saving lots of human effort from offline, video-per-video handling. As the
model is data-driven, any bias in training data could be captured in the algorithm. Apart from this
aspect, there are no known ethical issues in the real-world applications of this technology.

A.8 Code and License

Our codebase is mainly built upon RTD-Net2 [7] protected by Apache-2.0 License and Sparse
R-CNN3 [6] protected by MIT license. MultiTHUMOS [9] dataset and Charades [5] dataset are
restricted to non-commercial use only.

2https://github.com/MCG-NJU/RTD-Action
3https://github.com/PeizeSun/SparseR-CNN
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Figure A: Visualizations of the learnable query points of PointTAD on (a) MultiTHUMOS and (b)
Charades.
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