Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
Minyoung Kim, Vladimir Pavlovic
Inference networks of traditional Variational Autoencoders (VAEs) are typically amortized, resulting in relatively inaccurate posterior approximation compared to instance-wise variational optimization. Recent semi-amortized approaches were proposed to address this drawback; however, their iterative gradient update procedures can be computationally demanding. In this paper, we consider a different approach of building a mixture inference model. We propose a novel recursive mixture estimation algorithm for VAEs that iteratively augments the current mixture with new components so as to maximally reduce the divergence between the variational and the true posteriors. Using the functional gradient approach, we devise an intuitive learning criteria for selecting a new mixture component: the new component has to improve the data likelihood (lower bound) and, at the same time, be as divergent from the current mixture distribution as possible, thus increasing representational diversity. Although there have been similar approaches recently, termed boosted variational inference (BVI), our methods differ from BVI in several aspects, most notably that ours deal with recursive inference in VAEs in the form of amortized inference, while BVI is developed within the standard VI framework, leading to a non-amortized single optimization instance, inappropriate for VAEs. A crucial benefit of our approach is that the inference at test time needs a single feed-forward pass through the mixture inference network, making it significantly faster than the semi-amortized approaches. We show that our approach yields higher test data likelihood than the state-of-the-arts on several benchmark datasets.