
Supplementary Material for:
Recursive Inference for Variational Autoencoders

Minyoung Kim1

1Samsung AI Center
Cambridge, UK

mikim21@gmail.com

Vladimir Pavlovic1,2
2Rutgers University

Piscataway, NJ, USA
vladimir@cs.rutgers.edu

This supplement consists of the following materials:

• Detailed experimental setups (Sec. 1).
– Summary of competing approaches (Sec. 1.1)
– Summary of datasets (Sec. 1.2)
– Network architectures (Sec. 1.3)
– Experimental setups (Sec. 1.4)

• Experimental results (Sec. 2).
– Test inference time (Sec. 2.1)

• Comparison with fully-connected decoder networks (Sec. 3).
• Pseudo Codes (Sec. 4).

1 Detailed Experimental Setups

1.1 Competing Approaches

The competing approaches are summarized as follows:

• VAE: The standard VAE model (amortized inference) [6, 16].
• SA: The semi-amortized VAE [4]. We fix the SVI gradient step size as 10−3, but vary the

number of SVI steps from {1, 2, 4, 8}.
• IAF: The autoregressive-based flow model for the encoder q(z|x) [5], which has richer

expressiveness than VAE’s post-Gaussian encoder. The number of flows is chosen from
{1, 2, 4, 8}.

• HF: The Householder flow encoder model that represents the full covariance using the
Householder transformation [18]. The number of flows is chosen from {1, 2, 4, 8}.

• ME: For a baseline comparison, we also consider the same mixture encoder model, but
unlike our recursive mixture learning, the model is trained conventionally, end-to-end;
all mixture components’ parameters are updated simultaneously. The number of mixture
components is chosen from {2, 3, 4, 5}.

• RME: Our proposed recursive mixture encoder model. We vary the number of the compo-
nents to be added M from {1, 2, 3, 4}, leading to mixture order 2 to 5.

In addition, we test our RME model modified to employ the previous Boosted VI’s entropy regulariza-
tion schemes. More specifically, we replace our bounded KL loss with the two entropy regularization
methods as follows:

• BVI-ER1: Following [12], we replace our bounded KL loss by ν · Eq(z|x)[− log q(z|x)]
estimated by Monte Carlo, where ν = 1/

√
t+ 1 is the impact that decreases as the training

iteration t.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

• BVI-ER2: Instead of the Monte Carlo estimation of the entropy, we use [3]’s closed-form
Gaussian entropy log detΣ where Σ is the (diagonal) covariance of the new component
q(z|x).

1.2 Datasets

The following benchmark datasets are used. We randomly hold out 10% of the training data as
validation sets, except for CelebA.

• MNIST [10]: 60, 000 training images and 10, 000 test images where each image is of
dimension (28× 28× 1).

• OMNIGLOT [9]: 24, 345 training images and 8, 070 test images where each image is of
dimension (28× 28× 1).

• CIFAR10 [7]: 50, 000 training images and 10, 000 test images where each image is of
dimension (32× 32× 3).

• SVHN [13]: 73, 257 training images and 26, 032 test images where each image is of
dimension (32× 32× 3).

• CelebA [11]: 202, 599 tightly cropped face images of size (64 × 64 × 3). We randomly
split the data into 80%/10%/10% train/validation/test sets.

1.3 Network Architectures

We adopt the convolutional neural networks for both the encoder and decoder models for all competing
approaches. This is because the convolutional networks are believed to outperform fully connected
networks for many tasks in the image domain [8, 17, 15]. We also provide empirical evidence in
Sec. 3 of this Supplement that the fully-connected decoder architecture is inferior to the deconvnet
decoder that we adopted, when the two architectures have roughly equal numbers of parameters. This
is why we excluded comparison with the recent Laplacian approximation approach of [14] in the main
paper. They use the first-order approximate solver method to obtain the mode of the true posterior,
but such linearization of a deep network is only computationally feasible for fully connected decoder
models. On the other hand, our recursive mixture learning admits arbitrary types of encoder/decoder
architectures, which is another advantage. In Sec. 3 of this Supplement we empirically compare the
performance between the Laplace approximation [14] and our approach.

For the encoder architecture, we first apply L convolutional layers with (4 × 4)-pixels kernels,
followed by two fully-connected layers with hidden layers dimension h. For the decoder, the
input images first go through two fully connected layers, followed by L deconvolution (transposed
convolution) layers with (4× 4)-pixels filters. Here, L = 3 for all datasets except CelebA which has
L = 4. The hidden layer dimension h = 256 for MNIST/OMNIGLOT and h = 512 for the others.
For fair comparison, the same convolutional network architectures are used in all competing methods.

For our recursive mixture RME, all mixture components of the inference model are initialized
identically with the VAE’s encoder. For the ME (blind end-to-end mixture learning), the first
mixture component is initialized with the VAE’s encoder while the others are chosen randomly.
This is because initializing all components identically would constitute a local maximum of the
log-likelihood objective function of the ME, making it unable to update the model further. For the
IAF, we follow the inverse autoregressive flow modeling [5] where we use the two-layer MADE [2]
(with the number of hidden units 500) as the autoregressiveNN network. The base density, which
is transformed to a more complex density by the flow, is initialized with the trained VAE’s encoder
q(z|x). For the HF, the latents of the base encoder go through a number of linear transformations,
followed by the Householder transformation, where the base encoder is also initialized with the
VAE’s encoder.

The decoder is modeled as transposed convolutional networks. The network architectures are slightly
different across the datasets due to different input image dimensions. We summarize the full network
architectures in Tab. 1 (MNIST and OMNIGLOT), Tab. 2 (CIFAR10 and SVHN), and Tab. 3 (CelebA).

In our recursive mixture model, we also need to define the impact function ε(x) for each component.
We used a fully connected network ε(x;η) with one hidden layer of dimension 10. To prevent a new
component from overly taking the mixing proportion, we set an upper bound εmax on the output of

2

Table 1: Encoder (i.e., each component in our mixture model) and decoder network architectures
for MNIST and OMNIGLOT datasets. In the convolutional and transposed convolutional layers, the
paddings are properly adjusted to match the input/output dimensions.

ENCODER DECODER

INPUT: (28× 28× 1) INPUT: z ∈ Rp (p ∈ {10, 20, 50, 100})
32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 256; RELU

32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 3 · 3 · 64; RELU

64 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 256; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 2 ×p (p = DIM(z) ∈ {10, 20, 50, 100}) 1 (4 × 4) TRANSPOSED CONV.; STRIDE 2

Table 2: Encoder and decoder network architectures for CIFAR10 and SVHN datasets.

ENCODER DECODER

INPUT: (32× 32× 3) INPUT: z ∈ Rp (p ∈ {10, 20, 50, 100})
32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 512; RELU

32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 4 · 4 · 64; RELU

64 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 512; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 2 ×p (p = DIM(z) ∈ {10, 20, 50, 100}) 3 (4 × 4) TRANSPOSED CONV.; STRIDE 2

the network. This is done by applying the sigmoid function to the output of ε(x), and multiplication
by εmax. For all our experiments εmax = 0.1 worked well.

1.4 Experimental Setups

For all optimization, we used the Adam optimizer with batch size 128 and learning rate 0.0005. We
run the optimization until 2000 epochs. We vary the latent dimension dim(z), from {10, 20, 50, 100}.
To report the test log-likelihood scores log p(x), we use the importance weighted sampling estimation
(IWAE) method [1]. More specifically,

IWAE = log

(
1

K

K∑
i=1

p(x, zi)

q(zi|x)

)
, (1)

where z1, . . . , zK are i.i.d. samples from q(z|x). It can be shown that IWAE lower bounds log p(x)
and can be arbitrarily close to the target as the number of samples K grows. We use K = 100
throughout the experiments.

For each model/dataset, we perform 10 runs with different random train/validation splits, where each
run consists of three trainings by starting with different random model parameters, among which only
one model with the highest validation performance is chosen. To see the statistical significance of
difference between competing models, we also performed the one-sided Wilcoxon signed rank test
for every pair, namely (the best model vs. each non-best model), using the 10 log-likelihood scores
per model.

2 Experimental Results

The test log-likelihood scores are summarized in Tab. 7 (MNIST)1, Tab. 8 (OMNIGLOT), Tab. 9
(CIFAR10), Tab. 10 (SVHN), and Tab. 11 (CelebA). We also report the performance of the entropy

1For the MNIST results, the test log-likelihood scores of the competing methods mismatch those reported in
the related work (e.g., [19]). Significantly higher scores. This is because we adopt the Gaussian decoder models,
not the binary decoders, for all competing methods.

3

Table 3: Encoder and decoder network architectures for CelebA dataset.

ENCODER DECODER

INPUT: (64× 64× 3) INPUT: z ∈ Rp (p ∈ {10, 20, 50, 100})
32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 512; RELU

32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 4 · 4 · 64; RELU

64 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) 64 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

64 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 512; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 2 ×p (p = DIM(z) ∈ {10, 20, 50, 100}) 3 (4 × 4) TRANSPOSED CONV.; STRIDE 2

Table 4: (Per-batch) Test inference time (in milliseconds) with batch size 128. The latent dimension
dim(z) = 50.

MNIST OMNIG. CIFAR10 SVHN CELEBA

VAE 3.6 4.8 3.7 2.2 2.7
SA (1) 9.7 11.6 9.8 7.0 8.4
SA (2) 18.1 19.2 16.8 15.5 13.8
SA (4) 32.2 34.4 27.9 30.1 27.1
SA (8) 60.8 65.7 60.5 60.3 53.8
IAF (1) 4.8 5.7 5.1 3.4 4.4
IAF (2) 5.9 6.4 5.6 3.7 5.1
IAF (4) 6.2 7.0 6.3 4.7 5.7
IAF (8) 7.7 8.2 7.6 5.7 7.7
RME (2) 4.7 5.4 4.9 3.2 4.2
RME (3) 4.9 5.5 5.1 3.6 4.1
RME (4) 4.6 5.3 5.1 3.5 4.2
RME (5) 4.8 5.6 5.1 3.3 4.8

regularization schemes introduced in the previous Boosted VI (BVI) approaches. To this end, in our
RME, we replace our bounded KL (BKL) loss with the entropy regularization. More specifically,
we consider two entropy regularization schemes – BVI-ER1: [12]’s regularization of the negative
entropy of q(z|x) whose impact decreases 1√

t+1
as a function of training iteration t, as suggested.

BVI-ER2: [3]’s Gaussian entropy based regularization (i.e., penalizing small log detΣ where Σ
is the (diagonal) covariance matrix of the new component q(z|x) to be optimized. Overall the
results indicate that our recursive mixture encoder (RME) outperforms the competing approaches
consistently for all datasets.

2.1 Test Inference Time

Another key advantage of our recursive mixture model is the computational efficiency of test-time
inference, comparable to that of VAE. Unlike the semi-amortized approaches, where one performs
the SVI gradient adaptation at test time, the inference in our RME is merely a single feed forward
pass through our mixture encoder network. That is, once training is done, our mixture inference
model remains fixed, with no adaptation required.

To verify this, we measure the actual inference time for competing approaches. The per-batch
inference times (batch size 128) on all benchmark datasets are shown in Tab. 4. To report the results,
for each method and each dataset, we run the inference over the entire test set batches, measure
the running time, then take the per-batch average. We repeat the procedure five times and report
the average. All models are run on the same machine with a single GPU (RTX 2080 Ti), Core i7
3.50GHz CPU, and 128 GB RAM. We only report test times for the latent dimension dim(z) = 50 as
the impact of the latent dimension appears to be less significant.

As expected, the semi-amortized approach (SA) suffers from the computational overhead of test
time gradient updates, with the inference time significantly increased as the number of the updates

4

Table 5: (Fully connected vs. convolutional decoder networks) Test log-likelihood scores (unit in nat).
The figures without parentheses are the scores using the fully connected networks, whereas figures in
the parentheses are the scores using the convolutional decoder networks. Both architectures have
roughly equal number of the weight parameters. The number of linearization steps in the VLAE is
chosen from {1, 2, 4, 8}.

MNIST OMNIGLOT
DIM(z) = 10 DIM(z) = 50 DIM(z) = 10 DIM(z) = 50

VAE 563.6 (685.1) 872.6 (1185.7) 296.8 (347.0) 519.4 (801.6)
SA (1) 565.1 (688.1) 865.8 (1172.1) 297.6 (344.1) 489.0 (792.7)
SA (2) 565.3 (682.2) 868.2 (1176.3) 295.3 (349.5) 534.1 (793.1)
SA (4) 565.9 (683.5) 852.9 (1171.3) 294.8 (342.1) 497.8 (794.4)
SA (8) 564.9 (684.6) 870.9 (1183.2) 299.0 (344.8) 500.0 (799.4)
VLAE (1) 590.0 922.2 307.4 644.0
VLAE (2) 595.1 908.8 307.6 621.4
VLAE (4) 605.2 841.4 318.0 597.7
VLAE (8) 605.7 779.9 316.6 553.1
RME (2) 570.9 (697.2) 888.1 (1201.7) 298.4 (349.3) 524.7 (821.0)
RME (3) 571.9 (698.2) 888.2 (1202.4) 298.6 (349.9) 524.8 (820.4)
RME (4) 571.4 (699.0) 888.1 (1203.1) 298.8 (350.7) 525.3 (819.9)
RME (5) 572.2 (699.4) 888.0 (1203.7) 298.8 (351.1) 526.9 (819.9)

increases. Our RME is comparable to the VAE, and faster than the IAF (with more than a single flow),
which verifies our claim. Interestingly, increasing the mixture order in our model rarely affects the
inference time, due to intrinsic parallelization of the feed forward pass through the multiple mixture
components networks, leading to inference times as fast as those of the single component model
(VAE).

3 Comparison with Fully-Connected Decoder Networks

In the main paper we used the convolutional networks for both encoder and decoder models. This
is a reasonable architectural choice considering that all the datasets are images. Also it is widely
believed that convolutional networks outperform fully connected networks for many tasks in the
image domain [8, 17, 15]. However, one can alternatively consider fully connected networks for
either the encoder or the decoder, or both. Nevertheless, being equal in the number of model
parameters, using both convolutional encoder and decoder networks always outperformed the fully
connected counterparts. In this section we empirically verify this by comparing the test likelihood
performance between the two architectures. We particularly focus on comparing the two architectures
(convolutional vs. fully connected) for the decoder model alone, while retaining the convolutional
network encoder for both cases.

Using the fully connected decoder network allows us to test the recent Laplacian approximation
approach [14] (denoted by VLAE), which we excluded from the main paper. They employ a
first-order approximation solver to find the mode of the true posterior (i.e., linearizing the decoder
function), and compute the Hessian of the log-posterior at the mode to define the (full) covariance
matrix. This procedure is computationally feasible only for a fully connected decoder model. We
conduct experiments on MNIST and OMNIGLOT datasets where the fully connected decoder network
consists of two hidden layers and the hidden layer dimensions are chosen to set the total number of
weight parameters roughly equal to the convolutional decoder network used in the main paper.

Tab. 5 summarizes the results. Among the fully connected networks, the VLAE achieves the highest
performance. Instead of doing SVI gradient updates as in the SAVI method (SA), the VLAE aims to
directly solve for the mode of the true posterior by decoder linearization, leading to more accurate
posterior refinement without suffering from the step size issue. Our recursive mixture, with the fully
connected decoder networks, still improves the VAE’s scores, but the improvement is often less than
that of the VLAE. However, when compared to the convnet decoder cases, even the conventional
VAE significantly outperforms the VLAE. The best VLAE’s scores are significantly lower than VAE’s
using convolutional decoders. Restricted network architecture of the VLAE is its main drawback.

5

Table 6: (Fully connected networks as decoders) Per-batch inference time (unit in milliseconds) with
batch size 128. The figures without parentheses are the times using the fully connected networks,
whereas figures in the parentheses are the times using the convolutional decoder networks.

MNIST OMNIGLOT
DIM(z) = 10 DIM(z) = 50 DIM(z) = 10 DIM(z) = 50

VLAE (1) 10.1 12.9 11.2 12.1
VLAE (2) 11.2 13.4 13.2 16.9
VLAE (4) 14.8 17.8 15.4 18.7
VLAE (8) 20.7 30.8 22.1 26.4
RME (2) 5.0 (5.0) 5.0 (4.7) 5.4 (6.0) 5.6 (5.4)
RME (3) 4.9 (5.1) 4.9 (4.9) 5.9 (5.7) 5.4 (5.5)
RME (4) 4.9 (5.0) 4.9 (4.6) 6.1 (5.9) 5.9 (5.3)
RME (5) 5.0 (5.1) 4.7 (4.8) 5.8 (6.1) 5.4 (5.6)

We also compare the test inference times of our recursive mixture model and the VLAE using the
fully connected decoder networks. Note that VLAE is a semi-amortized approach, which needs to
solve the Laplace approximation at test time. Thus another drawback of VLAE is the computational
overhead of inference, which can be demanding as the number of linearization steps increases. The
per-batch inference times (batch size 128) are shown in Tab. 6. For the moderate or large linearization
steps (e.g., 4 or 8), the inference takes significantly longer than that of our RME (amortized method).

4 Pseudo Codes

The following is the pseudocode for the proposed model. The real full Python/PyTorch code is
available in https://github.com/minyoungkim21/recmixvae.

Hyperparameters

batch_size = 128 # input batch size for training
n_epochs = 2000 # number of epochs to train
x_dim = (C=1 x H=28 x W=28) # input dimension
z_dim = 50 # latent space dimension
learning_rate = 1e-6 # learning rate for ADAM optimizer

num_comps = 5 # number of mixture components for encoder
eps_regr_nhl = 1 # number of hidden layers for epsilon regressor
eps_regr_dim = 10 # hidden layer dim for epsilon regressor
eps_min = 0.001 # minimum epsilon
eps_max = 0.1 # maximum epsilon
kl_max = 500.0 # maximum kl(q_k||Q_{k-1}) allowed in the objective

Main class

import torch.nn as nn

class RecMixVAE(nn.Module):

self.M = num_comps-1 # components: 0,1,...,M (the number of comps = M+1)
self.decoder = ConvDecoder(z_dim, x_dim) # decoder
self.prior = DiagonalGaussian(mu=zeros, logvar=zeros) # prior

components of encoder (q_0, q_1, ..., q_M)
self.comps = nn.ModuleList([ConvEncoder(z_dim, x_dim) for _ in range(num_comps)])

regressors for impacts of components (eps_0, eps_1, ..., eps_M); note: eps_0 = 1 (const)
self.eps_regrs = nn.ModuleList([Const(1.0)] +

[BaseBoundedRegressor(x_dim, eps_min, eps_max, eps_regr_nhl, eps_regr_dim)
for _ in range(num_comps-1)])

def encoder_upto_kth(self, x, k):

6

https://github.com/minyoungkim21/recmixvae

’’’
Mixture with components q_0(.|x), q_1(.|x), ..., q_k(.|x) is formed.
More specifically, eg, for k=2,

Q_{k=2}(.|x) = alpha_0(x) * q_0(.|x) + alpha_1(x) * q_1(.|x) + alpha_2(x) * q_2(.|x)
where

alpha_2(x) = eps_2(x)
alpha_1(x) = eps_1(x) * (1-eps_2(x))
alpha_0(x) = eps_0(x) * (1-eps_1(x)) * (1-eps_2(x))

inputs:
k = component index (0 <= k <= self.M)

returns:
n mixtures for Q_k(.|x) (with k+1 components)

’’’

def encoder_kth_comp(self, x, k):
’’’
Just return k-th component q_k(.|x)
inputs:

k = component index (0 <= k <= self.M)
returns:

n distributions (eg, DiagonalGaussian’s) q_k(.|x)
’’’
return self.comps[k](x)[0]

def eval_elbo_for_mixture(self, x, mixture):
’’’
Evaluate elbo (recon error and kl) for a mixture encoder
inputs:

mixture = n mixture distributions from Q(.|x)
returns:

ell = E_{Q(z|x)}[log p(x|z)]
kl = KL(Q(z|x) || p(z))

’’’
let K = mixture order
alphas = mixture.logalphas.exp()
z = samples from q_m(z|x) for m=1...K
(decoder) evaluate log p(x|z) for z ~ q_m(z|x) for m=1...K
(prior) evaluate log p(z) for z ~ q_m(z|x) for m=1...K
evaluate log Q(z|x) for z ~ q_m(z|x) for m=1...K
return ell = E_{Q(z|x)}[log p(x|z)] and kl = KL(Q(z|x) || p(z))

def forward(self, x, k, loss_type):
’’’
compute objectives for recursive mixture VAE
inputs:

k = component index (0 <= k <= self.M)
loss_type = either of

’new_comp’: compute elbo(q_k) and kl(q_k||Q_{k-1}) (the latter None if k=0)
’mixture’: compute elbo(Q_k)

returns:
loss_type == ’new_comp’: elbo(q_k), kl(q_k||Q_{k-1}) (averaged over batch x)
loss_type == ’mixture’: elbo(Q_k) (averaged over batch x)

’’’
if loss_type == ’new_comp’:

q_z_x = self.encoder_kth_comp(x, k) # q_k
Q_z_x = self.encoder_upto_kth(x, k-1) if k>0 else None # Q_{k-1}
evaluate elbo(q_k) and kl(q_k||Q_{k-1})

elif loss_type == ’mixture’:
Q_z_x = self.encoder_upto_kth(x, k) # Q_k
ell, kl = self.eval_elbo_for_mixture(x, Q_z_x)
elbo = (ell - kl).mean()

def enable_grad(self, params):
’’’
Disable the autograd for all parameters except for "params"

7

’’’

Main algorithm

model = RecMixVAE()

while epoch <= n_epochs:

for batch sampled from the training data:

update q_0
model.enable_grad(model.comps[0])
elbo, _ = model(batch, 0, loss_type=’new_comp’)
update model by backprop with loss = -elbo

update (q_m, eps_regr_m) for m=1,...,M
for m in range(1,model.M+1):

update q_m
model.enable_grad(model.comps[m])
elbo, kl = model(batch, m, loss_type=’new_comp’)
update model by backprop with loss = -elbo + (kl_max - kl).relu()

update eps_regr_m
model.enable_grad(model.eps_regrs[m])
elbo = model(batch, m, loss_type=’mixture’)
update model by backprop with loss = -elbo

update decoder
model.enable_grad(model.decoder)
elbo = model(batch, model.M, loss_type=’mixture’)
update model by backprop with loss = -elbo

References
[1] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders, 2016. In

Proceedings of the Second International Conference on Learning Representations, ICLR.
[2] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Autoencoder for

Distribution Estimation, 2015. International Conference on Machine Learning.
[3] Fangjian Guo, Xiangyu Wang, Kai Fan, Tamara Broderick, and David B Dunson. Boosting variational

inference. In arXiv preprint, 2016.
[4] Y. Kim, S. Wiseman, A. C. Millter, D. Sontag, and A. M. Rush. Semi-amortized variational autoencoders.

In International Conference on Machine Learning, 2018.
[5] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-

proving variational inference with inverse autoregressive flow, 2016. In Advances in Neural Information
Processing Systems.

[6] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes, 2014. In Proceedings of the
Second International Conference on Learning Representations, ICLR.

[7] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images, 2009. Technical
report, Computer Science Department, University of Toronto.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks, 2012. In Advances in Neural Information Processing Systems.

[9] B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum. One-shot learning by inverting a compositional causal
process, 2013. In Advances in Neural Information Processing Systems.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[11] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), 2015.

[12] Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, and Gunnar Rätsch. Boosting black
box variational inference, 2018. In Advances in Neural Information Processing Systems.

8

Table 7: (MNIST) Test log-likelihood scores (unit in nat) estimated by the importance weighted
sampling [1]. The figures in the parentheses next to model names indicate: the number of SVI
steps in SA, the number of flows in IAF and HF, and the number of mixture components in ME
and RME. The superscripts are the standard deviations. The best (on average) results are boldfaced
in red. In each column, the statistical significance of the difference between the best model (red)
and each competing model, is depicted as color: anything non-colored indicates p ≤ 0.01 (strongly
distinguished), p ∈ (0.01, 0.05] as yellow-orange, p ∈ (0.05, 0.1] as orange, p > 0.1 as red orange
(little evidence of difference) by the Wilcoxon signed rank test. Best viewed in color.

dim(z) 10 20 50 100

VAE 685.11.8 930.73.9 1185.73.9 1225.44.2

SA(1) 688.12.7 921.22.3 1172.11.8 1196.93.3

SA(2) 682.21.5 932.02.4 1176.33.4 1216.72.9

SA(4) 683.51.5 925.52.6 1171.33.5 1217.73.9

SA(8) 684.61.5 928.13.9 1183.23.4 1211.72.9

IAF(1) 687.31.1 934.03.3 1180.62.7 1213.45.6

IAF(2) 677.71.6 931.43.7 1190.11.9 1224.42.2

IAF(4) 685.01.5 926.32.6 1178.11.6 1216.43.9

IAF(8) 689.71.4 934.12.4 1150.02.2 1190.93.9

HF(1) 682.51.4 917.22.6 1204.34.0 1203.32.3

HF(2) 677.62.2 923.93.1 1191.510.8 1213.63.0

HF(4) 683.32.6 927.32.8 1197.21.5 1226.02.0

HF(8) 679.61.5 928.53.1 1184.11.8 1220.03.5

ME(2) 685.71.2 926.73.0 1152.81.7 1191.42.5

ME(3) 678.52.5 933.14.1 1162.84.7 1216.92.1

ME(4) 680.00.9 914.72.3 1205.12.3 1214.93.4

ME(5) 682.01.7 920.61.9 1198.53.5 1181.73.7

RME(2) 697.21.1 943.91.6 1201.70.9 1240.72.5

RME(3) 698.21.1 945.11.6 1202.41.0 1240.82.4

RME(4) 699.01.0 945.21.6 1203.11.0 1241.52.4

RME(5) 699.42.1 945.01.7 1203.71.0 1242.02.4

BVI-ER1(2) 694.51.9 939.72.8 1196.22.8 1236.33.0

BVI-ER1(3) 694.51.9 939.52.9 1191.62.9 1233.93.0

BVI-ER1(4) 692.21.8 937.82.9 1191.62.8 1227.63.0

BVI-ER1(5) 692.01.9 931.23.0 1183.12.9 1229.03.1

BVI-ER2(2) 694.51.9 939.72.1 1189.62.2 1236.23.0

BVI-ER2(3) 694.51.9 939.42.1 1192.12.3 1233.63.0

BVI-ER2(4) 692.21.9 937.62.1 1191.52.2 1227.43.0

BVI-ER2(5) 692.41.9 931.72.2 1181.72.2 1228.93.0

[13] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning. 2011.

[14] Yookoon Park, Chris Kim, and Gunhee Kim. Variational Laplace autoencoders. In International Conference
on Machine Learning, 2019.

[15] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In arXiv preprint, 2015.

[16] D.J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in
deep generative models, 2014. International Conference on Machine Learning.

[17] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. In arXiv preprint, 2013.

[18] J. M. Tomczak and M. Welling. Improving variational autoencoders using Householder flow, 2016. In
Advances in Neural Information Processing Systems, Workshop on Bayesian Deep Learning.

[19] Jakub M. Tomczak and Max Welling. VAE with a VampPrior, 2018. Artificial Intelligence and Statistics.

9

Table 8: (OMNIGLOT) Test log-likelihood scores (unit in nat). The same interpretation as Tab. 7.

dim(z) 10 20 50 100

VAE 347.01.7 501.61.6 801.64.0 917.55.1

SA(1) 344.11.4 499.32.5 792.77.9 905.84.2

SA(2) 349.51.4 501.02.7 793.14.8 920.04.5

SA(4) 342.11.0 488.21.8 794.41.9 914.65.6

SA(8) 344.81.1 490.32.8 799.42.7 942.25.2

IAF(1) 347.81.6 489.91.9 788.84.1 937.47.2

IAF(2) 344.21.6 494.91.4 795.72.7 934.67.3

IAF(4) 347.91.9 496.02.0 775.12.2 920.94.1

IAF(8) 343.91.4 498.82.3 774.72.9 885.72.8

HF(1) 335.51.2 488.62.0 795.93.3 917.02.4

HF(2) 340.61.3 495.91.8 784.54.8 929.43.7

HF(4) 343.31.2 487.02.7 799.73.2 877.54.7

HF(8) 343.31.3 488.32.4 794.64.0 889.24.7

ME(2) 344.21.5 491.71.4 793.43.8 880.33.6

ME(3) 350.31.8 491.22.1 807.54.9 875.94.6

ME(4) 337.71.1 491.31.8 732.03.1 939.88.6

ME(5) 343.01.4 478.02.8 805.73.8 861.97.0

RME(2) 349.31.5 508.21.2 821.03.1 941.51.7

RME(3) 349.91.6 507.51.1 820.40.9 944.65.1

RME(4) 350.71.7 509.01.2 819.90.9 944.41.7

RME(5) 351.11.7 509.11.4 819.90.9 944.01.6

BVI-ER1(2) 349.21.9 507.92.2 817.13.3 937.95.1

BVI-ER1(3) 350.01.9 507.82.2 816.63.4 936.25.1

BVI-ER1(4) 350.71.5 507.82.3 816.83.4 935.63.8

BVI-ER1(5) 351.11.5 508.22.3 816.43.3 935.73.8

BVI-ER2(2) 349.31.9 507.82.2 817.13.4 937.65.1

BVI-ER2(3) 349.81.9 507.82.2 816.63.4 936.15.1

BVI-ER2(4) 350.71.5 507.82.2 816.93.4 935.63.8

BVI-ER2(5) 351.01.5 508.12.2 816.43.4 935.73.8

10

Table 9: (CIFAR10) Test log-likelihood scores (unit in nat). The same interpretation as Tab. 7.

dim(z) 10 20 50 100

VAE 1645.74.9 2089.75.8 2769.97.1 3381.014.7

SA(1) 1645.05.6 2086.06.2 2765.07.1 3378.710.4

SA(2) 1648.64.8 2088.26.6 2764.17.7 3377.89.8

SA(4) 1648.55.2 2083.98.4 2766.76.6 3380.27.9

SA(8) 1642.15.4 2086.06.1 2766.67.5 3376.610.6

IAF(1) 1646.04.9 2081.15.4 2762.67.2 3383.77.1

IAF(2) 1642.04.9 2084.65.6 2763.04.3 3373.314.2

IAF(4) 1646.05.1 2083.26.1 2760.67.0 3371.18.1

IAF(8) 1643.64.6 2087.14.6 2761.86.9 3364.09.6

HF(1) 1644.54.4 2079.15.5 2757.94.4 3393.44.7

HF(2) 1636.74.9 2086.05.9 2764.74.4 3384.84.7

HF(4) 1642.14.9 2082.37.3 2763.44.4 3385.54.4

HF(8) 1639.95.4 2084.76.1 2765.57.2 3382.54.3

ME(2) 1643.65.1 2086.66.8 2767.99.4 3378.59.1

ME(3) 1638.65.8 2079.85.9 2770.27.8 3388.17.7

ME(4) 1641.85.4 2084.76.9 2763.59.3 3384.610.3

ME(5) 1641.75.6 2080.25.9 2766.16.3 3351.311.0

RME(2) 1652.35.0 2095.75.8 2779.66.6 3403.06.9

RME(3) 1654.24.9 2099.17.2 2783.06.1 3404.26.8

RME(4) 1655.06.4 2096.65.9 2781.16.6 3403.26.1

RME(5) 1654.54.6 2098.45.8 2782.96.4 3404.65.7

BVI-ER1(2) 1648.65.1 2094.45.7 2775.96.4 3393.16.8

BVI-ER1(3) 1648.95.0 2094.75.9 2776.26.6 3393.86.5

BVI-ER1(4) 1649.05.1 2095.05.8 2776.56.3 3394.26.6

BVI-ER1(5) 1649.15.2 2095.15.8 2776.86.5 3394.27.7

BVI-ER2(2) 1648.65.1 2094.45.7 2775.86.8 3393.16.6

BVI-ER2(3) 1648.95.0 2094.75.7 2776.26.6 3393.86.5

BVI-ER2(4) 1649.05.1 2095.05.8 2776.56.3 3394.26.2

BVI-ER2(5) 1649.15.1 2095.15.8 2776.86.5 3394.16.1

11

Table 10: (SVHN) Test log-likelihood scores (unit in nat). The same interpretation as Tab. 7.

dim(z) 10 20 50 100

VAE 3360.29.1 4054.514.3 5363.721.4 6703.028.4

SA(1) 3358.78.9 4031.519.0 5362.135.7 6707.624.8

SA(2) 3356.08.8 4041.515.5 5377.023.2 6697.035.5

SA(4) 3327.88.2 4051.922.2 5391.720.4 6645.119.8

SA(8) 3352.811.5 4041.69.5 5370.818.5 6674.520.9

IAF(1) 3377.18.4 4050.09.4 5368.311.5 6650.315.7

IAF(2) 3362.38.9 4054.610.5 5360.010.0 6671.516.8

IAF(4) 3346.18.7 4048.68.7 5338.110.2 6630.017.2

IAF(8) 3372.68.3 4042.09.6 5341.810.1 6602.010.8

HF(1) 3381.48.9 4028.89.7 5372.010.1 6678.88.8

HF(2) 3342.48.3 4030.79.9 5376.610.2 6672.09.6

HF(4) 3370.08.2 4038.49.7 5371.89.8 6655.29.5

HF(8) 3343.88.2 4035.98.9 5351.111.1 6642.416.5

ME(2) 3352.39.9 4037.211.0 5343.213.1 6670.246.5

ME(3) 3335.210.9 4053.816.1 5367.715.8 6605.69.4

ME(4) 3358.214.9 4061.312.0 5191.918.5 6605.79.2

ME(5) 3360.67.8 4057.512.2 5209.212.8 6604.016.6

RME(2) 3390.08.1 4085.39.7 5403.210.2 6784.725.0

RME(3) 3392.012.6 4085.99.8 5405.110.4 6782.79.3

RME(4) 3388.68.3 4080.79.9 5403.810.2 6780.29.4

RME(5) 3391.98.2 4086.910.9 5405.58.5 6781.810.0

BVI-ER1(2) 3379.98.2 4077.310.3 5388.210.2 6753.510.0

BVI-ER1(3) 3380.98.1 4076.610.3 5384.210.5 6750.310.6

BVI-ER1(4) 3384.48.1 4073.110.2 5371.110.4 6748.911.3

BVI-ER1(5) 3382.28.4 4071.210.2 5378.110.1 6733.615.3

BVI-ER2(2) 3379.88.1 4077.39.8 5388.310.1 6753.210.1

BVI-ER2(3) 3380.98.4 4076.79.6 5383.910.2 6749.710.7

BVI-ER2(4) 3384.38.2 4073.29.2 5371.310.4 6749.111.1

BVI-ER2(5) 3382.18.4 4071.210.4 5377.710.2 6733.815.0

12

Table 11: (CelebA) Test log-likelihood scores (unit in nat). The same interpretation as Tab. 7.

dim(z) 10 20 50 100

VAE 9767.736.0 12116.425.3 15251.939.7 17395.532.4

SA(1) 9735.221.4 12091.121.6 15285.829.4 17432.430.4

SA(2) 9754.220.4 12087.121.5 15252.729.0 17434.029.8

SA(4) 9769.120.6 12116.320.5 15187.327.9 17360.528.9

SA(8) 9744.819.4 12100.622.8 15096.527.2 17409.728.0

IAF(1) 9750.327.4 12098.020.6 15271.228.6 17446.430.3

IAF(2) 9794.423.3 12104.521.8 15262.227.8 17449.531.8

IAF(4) 9764.729.5 12094.622.6 15261.028.1 17416.829.8

IAF(8) 9764.021.6 12109.322.0 15241.527.9 17452.539.5

HF(1) 9748.329.5 12077.231.4 15240.527.6 17461.629.9

HF(2) 9765.825.6 12093.025.6 15258.230.3 17479.830.0

HF(4) 9754.323.8 12082.027.0 15266.529.5 17532.730.6

HF(8) 9737.524.5 12087.325.5 15248.729.7 17663.428.7

ME(2) 9825.320.7 12072.723.3 15290.529.3 17419.328.7

ME(3) 9797.622.3 12100.321.7 15294.628.3 17395.328.9

ME(4) 9834.925.4 12092.222.6 15270.720.6 17458.536.8

ME(5) 9717.023.2 12095.325.1 15268.827.5 17406.831.8

RME(2) 9837.924.6 12193.123.5 15363.031.7 17873.532.8

RME(3) 9838.525.0 12192.323.5 15365.631.4 17874.431.2

RME(4) 9849.512.1 12192.623.4 15364.331.5 17875.114.2

RME(5) 9843.525.0 12194.211.5 15366.212.7 17874.332.5

BVI-ER1(2) 9801.626.1 12133.525.1 15206.428.2 17716.970.3

BVI-ER1(3) 9805.625.7 12146.522.4 15249.528.1 17558.6120.1

BVI-ER1(4) 9805.229.3 12127.722.3 15085.828.4 17256.1283.9

BVI-ER1(5) 9810.130.7 12092.322.3 15052.528.0 17069.9391.8

BVI-ER2(2) 9801.525.3 12133.628.7 15207.352.4 17716.692.1

BVI-ER2(3) 9805.724.9 12146.625.5 15249.654.6 17560.7109.2

BVI-ER2(4) 9805.126.3 12128.734.0 15084.942.5 17260.6228.6

BVI-ER2(5) 9810.427.8 12087.548.9 15051.743.5 17077.1387.6

13

	Detailed Experimental Setups
	Competing Approaches
	Datasets
	Network Architectures
	Experimental Setups

	Experimental Results
	Test Inference Time

	Comparison with Fully-Connected Decoder Networks
	Pseudo Codes

