
Recursive Inference for Variational Autoencoders

Minyoung Kim1

1Samsung AI Center
Cambridge, UK

mikim21@gmail.com

Vladimir Pavlovic1,2
2Rutgers University

Piscataway, NJ, USA
vladimir@cs.rutgers.edu

Abstract

Inference networks of traditional Variational Autoencoders (VAEs) are typically
amortized, resulting in relatively inaccurate posterior approximation compared
to instance-wise variational optimization. Recent semi-amortized approaches
were proposed to address this drawback; however, their iterative gradient update
procedures can be computationally demanding. To address these issues, in this
paper we introduce an accurate amortized inference algorithm. We propose a novel
recursive mixture estimation algorithm for VAEs that iteratively augments the
current mixture with new components so as to maximally reduce the divergence
between the variational and the true posteriors. Using the functional gradient
approach, we devise an intuitive learning criteria for selecting a new mixture
component: the new component has to improve the data likelihood (lower bound)
and, at the same time, be as divergent from the current mixture distribution as
possible, thus increasing representational diversity. Compared to recently proposed
boosted variational inference (BVI), our method relies on amortized inference in
contrast to BVI’s non-amortized single optimization instance. A crucial benefit
of our approach is that the inference at test time requires a single feed-forward
pass through the mixture inference network, making it significantly faster than the
semi-amortized approaches. We show that our approach yields higher test data
likelihood than the state-of-the-art on several benchmark datasets.

1 Introduction

Accurately modeling complex generative processes for high dimensional data (e.g., images) is a key
task in deep learning. In many application fields, the Variational Autoencoder (VAE) [13, 28] was
shown to be very effective for this task, endowed with the ability to interpret and directly control the
latent variables that correspond to underlying hidden factors in data generation, a critical benefit over
synthesis-only models such as GANs [7]. The VAE adopts the inference network (aka encoder) that
can perform test-time inference using a single feed-forward pass through a neural network. Although
this feature, known as amortized inference, allows VAE to circumvent otherwise time-consuming
procedures of solving the instance-wise variational optimization problem at test time, it often results
in inaccurate posterior approximation compared to the instance-wise variational optimization [4].

Recently, semi-amortized approaches have been proposed to address this drawback. The main idea is
to use an amortized encoder to produce a reasonable initial iterate, followed by instance-wise posterior
fine tuning (e.g., a few gradient steps) to improve the posterior approximation [11, 14, 22, 26]. This
is similar to the test-time model adaptation of the MAML [5] in multi-task (meta) learning. However,
this iterative gradient update may be computationally expensive during both training and test time:
for training, some of the methods require Hessian-vector products for backpropagation, while at test
time, one has to perform extra gradient steps for fine-tuning the variational optimization. Moreover,
the performance of this approach is often very sensitive to the choice of the gradient step size and the
number of gradient updates.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

In this paper, we consider a different approach; we build a mixture encoder model, for which we
propose a recursive estimation algorithm that iteratively augments the current mixture with a new
component encoder so as to reduce the divergence between the resulting variational and the true
posteriors. While the outcome is a (conditional) mixture inference model, which could also be
estimated by end-to-end gradient descent [33], our recursive estimation method is more effective and
less susceptible to issues such as the mixture collapsing. This resiliency is attributed to our specific
learning criteria for selecting a new mixture component: the new component has to improve the data
likelihood (lower bound) and, at the same time, be as divergent as possible from the current mixture
distribution, thus increasing the mixture diversity.

Although a recent family of methods called Boosted Variational Inference (BVI) [8, 20, 21, 2, 24]
tackles this problem in a seemingly similar manner, our approach differs from BVI in several
aspects. Most notably, we address the recursive inference in VAEs in the form of amortized inference,
while BVI is developed within the standard VI framework, leading to a non-amortized single
optimization instance, inappropriate for VAEs in which the decoder also needs to be simultaneously
learned. Furthermore, for the regularization strategy, required in the new component learning stage to
avoid degenerate solutions, we employ the bounded KL loss instead of the previously used entropy
regularization. This approach is better suited for amortized inference network learning in VAEs, more
effective as well as numerically more stable than BVI (Sec. 3.1 for detailed discussions).

Another crucial benefit of our approach is that the inference at test time is accomplished using a
single feed-forward pass through the mixture inference network, a significantly faster process than
the inference in semi-amortized methods. We show that our approach empirically yields higher test
data likelihood than standard (amortized) VAE, existing semi-amortized approaches, and even the
high-capacity flow-based encoder models on several benchmark datasets.

2 Background

We denote by x observation (e.g., image) that follows the unknown distribution pd(x). We aim to
learn the VAE model that fits the given iid data {xi}Ni=1 sampled from pd(x). Specifically, letting z
be the underlying latent vector, the VAE is composed of a prior p(z) = N (z; 0, I) and the conditional
model pθ(x|z) where the latter, also referred to as the decoder, is defined as a tractable density (e.g.,
Gaussian) whose parameters are the outputs of a deep network with weight parameters θ.

To fit the model, we aim to maximize the data log-likelihood,
∑N

i=1 log pθ(xi) where pθ(x) =
Ep(z)[pθ(x|z)]. As evaluating the marginal likelihood exactly is infeasible, the variational inference
aims to approximate the posterior by a density in some tractable family, that is, pθ(z|x) ≈ qλ(z|x)
where qλ(z|x) is a tractable density (e.g., Gaussian) with parameters λ. For instance, if the Gaussian
family is adopted, then qλ(z|x) = N (z;µ,Σ), where {µ,Σ} constitutes λ. The approximate
posterior qλ(z|x) is often called the encoder. It is well known that the marginal log-likelihood is
lower-bounded by the so-called evidence lower bound (ELBO, denoted by L),

log pθ(x) ≥ L(λ,θ; x) := Eqλ(z|x)
[

log pθ(x|z) + log p(z)− log qλ(z|x)
]
, (1)

where the gap in (1) is exactly the posterior approximation error KL(qλ(z|x)||pθ(z|x)).

Hence, maximizing L(λ,θ; x) with respect to λ for the current θ and the given input instance x,
amounts to finding the density in the variational family that best approximates the true posterior
pθ(z|x). However, notice that the optimum λ must be specific to (i.e., dependent on) the input x,
and for some other input point x′ one should do the ELBO optimization again to find the optimal
encoder parameter λ′ that approximates the posterior pθ(z|x′). The stochastic variational inference
(SVI) [9] directly implements this idea, and the approximate posterior inference for a new input point
x in SVI amounts to solving the ELBO optimization on the fly by gradient ascent.

However, the downside is computational overhead since we have to perform iterative gradient ascent
to have approximate posterior qλ(z|x) for a new input x. To remedy this issue, one can instead
consider an ideal function λ∗(x) that maps each input x to the optimal solution arg maxλ L(λ,θ; x).
We then introduce a deep neural network λ(x;φ) with the weight parameters φ as a universal
function approximator of λ∗(x). Then the ELBO, now denoted as L(φ,θ; x), is optimized with
respect to φ. This approach, called the amortized variational inference (AVI), was proposed in the
original VAE [13]. A clear benefit of it is the computational speedup thanks to the feed-forward
passing λ(x;φ) used to perform posterior inference for a new input x.

2

Although AVI is computationally more attractive, it is observed that the quality of data fitting is
degraded due to the amortization error, defined as an approximation error originating from the
difference between λ∗(x) and λ(x;φ) [4]. That is, the AVI’s computational advantage comes at the
expense of reduced approximation accuracy; the SVI posterior approximation can be more accurate
since we minimize the posterior approximation error KL(qλ(z|x)||pθ(z|x)) individually for each
input x. To address this drawback, the semi-amortized variational inference (SAVI) approaches have
been proposed in [11, 22, 14]. The main idea is to use the amortized encoder to produce a reasonably
good initial iterate for the subsequent SVI optimization. The parameters φ of the amortized encoder
are trained in such a way that several steps of warm-start SVI gradient ascent would yield reduction
of the instance-wise posterior approximation error, which is similar in nature to the gradient-based
meta learning [5] aimed at fast adaptation of the model to a new task in the multi-task meta learning.

However, the iterative gradient update procedure in SAVI is computationally expensive during both
training and test times. For training, it requires backpropagation for the objective that involves
gradients, implying the need for Hessian evaluation (albeit finite difference approximation). More
critically, at test time, the inference requires a time-consuming gradient ascent optimization. Moreover,
its performance is often quite sensitive to the choice of the gradient step size and the number of
gradient updates; and it is difficult to tune these parameters to achieve optimal performance-efficiency
trade-off. Although more recent work [26] mitigated the issue of choosing the step size by the
first-order approximate solution method with the Laplace approximation, such linearization of the
deep decoder network restricts its applicability to the models containing only fully connected layers,
and makes it difficult to be applied to more structured models such as convolutional networks.

3 Recursive Mixture Inference Model (Proposed Method)
Our method is motivated by the premise of the semi-amortized inference (SAVI), i.e., refining the
variational posterior to further reduce the difference from the true posterior. However, instead of
doing the direct SVI gradient ascent as in SAVI, we introduce another amortized encoder model that
augments the first amortized encoder to reduce the posterior approximation error.

Formally, let qφ(z|x) be our amortized encoder model1 with the parameters φ. For the current decoder
θ, the posterior approximation error KL(q(z|x)||pθ(z|x)) equals -L(q,θ; x) (up to constant).2 The
goal is to find another amortized encoder model q′(z|x) with the parameters φ′ such that, when
convexly combined with q(z|x) in a mixture εq′ + (1 − ε)q for some small ε > 0, the resulting
reduction of the posterior approximation error, ∆KL := L(εq′ + (1 − ε)q,θ; x) − L(q,θ; x), is
maximized. That is, we seek φ′ that maximizes ∆KL.

Compared to SAVI. The added encoder q′ can be seen as the means for correcting q, to reduce
the mismatch between q and the true pθ(z|x). In SAVI, this correction is done by explicit gradient
ascent (finetuning) along φ for every inference query, at train or test time, which is computationally
expensive. In contrast, we learn a differential amortized encoder at training time, which is fixed at test
time, requiring only a single neural network feed-forward pass to obtain the approximate posterior.

This encoder correction-by-augmentation can continue by regarding the mixture εq′ + (1 − ε)q
as our current inference model to which another new amortized encoder will be added, with the
recursion repeated a few times. This leads to a mixture model for the encoder, Q(z|x) = α0q(z|x) +
α1q
′(z|x) + · · · , where

∑
m αm = 1. The main question is how to find the next encoder model to

augment the current mixture Q. We do this by the functional gradient approach [6, 23].

Functional gradients for mixture component search. Following the functional gradient frame-
work [6, 23], the (ELBO) objective for the mixture Q(z|x) can be expressed as a functional, namely
a function that takes a density function Q as input,

J(Q) := EQ(z|x)
[

log pθ(x|z) + log p(z)− logQ(z|x)
]
. (2)

Let Q(z|x) be our current mixture. We aim to find q(z|x) to be added to Q by convex combination,

Q(z|x)← εq(z|x) + (1− ε)Q(z|x) (3)

for some small ε > 0, that maximizes our objective functional J . To this end we take the functional
gradient of the objective J(Q) with respect to Q. For a given input x, we regard the function Q(z|x)

1This is a shorthand for qλ(x;φ)(z|x). We often drop the subscript and use q(z|x) for simplicity in notation.
2We often abuse the notation, either L(φ,θ;x) or L(q,θ;x) interchangeably.

3

Figure 1: Illustration on MNIST using 2D latent z space. Results on two data instances (left and
right) are shown. (Top) Our recursive estimation: The progress of learning the second mixture
component is shown from left to right. The contour shows the true posterior p(z|x), the red is
q0(z|x), the cyan is the second component that we learn here q1(z|x). We only trained q1; remaining
parameters (of the decoder and q0) are fixed. Parameters of q1 are initialized to those of q0. (Bottom)
Conventional (blind) mixture estimation by end-to-end gradient ascent. For the instance 1 (left), the
two components collapse onto each other. For the second (right), a single component (red) becomes
dominant while the other (cyan) stays away, unutilized, from the support of the true posterior. The
cyan is initialized randomly to be different from the red (otherwise, it constitutes a local minimum).

as an infinite-dimensional vector indexed by z, and take the partial derivative at each z, which yields:

∂J(Q)

∂Q(z|x)
= log pθ(x|z) + log p(z)− logQ(z|x)− 1. (4)

Since we have a convex combination (3), the steepest ascent direction (4) needs to be projected onto
the feasible function space {q(·|x) − Q(·|x) : q ∈ Q} where Q = {qφ}φ is the set of variational
densities realizable by the parameters φ. Formally we solve the following optimization:

max
q∈Q

〈
q(·|x)−Q(·|x),

∂J(Q)

∂Q(·|x)

〉
, (5)

where 〈·, ·〉 denotes the inner product in the function space. Using (4), and considering all training
samples x ∼ pd(x), the optimization (5) can be written as:

max
φ

Epd(x)

[
Eqφ(z|x)

[
log pθ(x|z) + log p(z)− logQ(z|x)

]]
, (6)

where the outer expectation is with respect to the data distribution pd(x). By adding and subtracting
log qφ(z|x) to and from the objective, we see that (6) can be rephrased as follows:

max
φ

Epd(x)

[
L(φ,θ; x) + KL(qφ(z|x)||Q(z|x))

]
. (7)

Note that (7) gives us very intuitive criteria of how the new encoder component qφ should be selected:
it has to maximize the ELBO (the first objective term), and at the same time, qφ should be different
from the current mixture Q (the KL term). That is, our next encoder has to keep explaining the
data well (by large ELBO) while increasing the diversity of the encoder distribution (by large KL),
concentrating on those regions of the latent space that were poorly represented by the current Q. This
supports our original intuition stated at the beginning of this section. See Fig. 1 for the illustration.

Why recursive estimation. Although we eventually form a (conditional) mixture model for the
variational encoder, and such a mixture model can be estimated by end-to-end gradient descent, our
recursive estimation is efficient and less susceptible to the known issues of blind mixture estimation,
including collapsed mixture components and domination by a single component. This resiliency is
attributed to our specific learning criteria for selecting a new mixture component: improve the data
likelihood and at the same time be as distinct as possible from the current mixture, thus increasing
diversity. See Fig. 1 for an illustrative comparison between our recursive and blind mixture estimation.

3.1 Optimization Strategy
Although we discussed the key idea of recursive mixture estimation, that is, at each step, fixing
the current mixture Q and add a new component q, it should be noted that the previously added
components q’s (and their mixing proportions) need to be refined every time we update the decoder

4

Algorithm 1 Recursive Learning Algorithm for Mixture Inference Model.
Input: Initial {qm(z|x;φm)}Mm=0, {εm(x;ηm)}Mm=1, and pθ(x|z). Learning rate γ. KL bound C.
Output: Learned inference and decoder models.
Let: Qm = (1− εm)Qm−1 + εmqm (m = 1 . . .M), Q0 = q0. BKL(p||q) = max(C,KL(p||q)).
repeat

Sample a batch of data B from pd(x).
Update q0(z|x;φ0): φ0 ← φ0 + γ∇φ0Ex∼B

[
L(q0,θ;x)

]
.

for m = 1, . . . ,M do
Update qm(z|x;φm): φm ← φm + γ∇φmEx∼B

[
L(qm,θ;x) + BKL(qm||Qm−1)

]
.

Update εm(x;ηm): ηm ← ηm + γ∇ηmEx∼B

[
L
(
(1− εm)Qm−1 + εmqm,θ;x

)]
.

end for
Update pθ(x|z): θ ← θ + γ∇θEx∼B

[
L(QM ,θ;x)

]
.

until convergence

parameters θ. This is due to the VAE framework in which we have to learn the decoder in conjunction
with the inference model, one of the main differences from the previous BVI approaches (See Sec. 4).
To this end, we consider a mixture model Q that consists of the fixed number (M) of components
added to the initial component (denoted by q0), namely

Q(z|x) = α0(x)q0(z|x) +

M∑
m=1

αm(x)qm(z|x), (8)

where qm(z|x) (m = 0, . . . ,M) are all amortized encoders whose parameters are denoted by φm,
and αm are the mixing proportions. Since the impact of each component can be different from instance
to instance, we consider functions αm(x), instead of scalars. To respect the idea of recursively adding
components (i.e., qm with εm), the mixing proportions conform to the following implicit structure:

αm(x) = εm(x)

M∏
j=m+1

(1− εj(x)) for m = 0, 1, . . . ,M (let ε0(x) = 1). (9)

This is derived from the recursion, Qm = (1 − εm)Qm−1 + εmqm for m = 1, . . . ,M , where we
denote by Qm the mixture formed by q0, q1, . . . , qm with ε0(= 1), ε1, . . . , εm, and Q0 := q0. Hence
QM = Q. Note also that we model εm(x) as neural networks εm(x;ηm) with parameters ηm.
Now we describe our recursive mixture learning algorithm. As we seek to update all components
simultaneously together with the decoder θ, we employ gradient ascent optimization with all param-
eters iteratively and repeatedly. Our algorithm is described in Alg. 1. Notice that for the φ update
in the algorithm, we used the BKL which stands for Bounded KL, in place of KL. The KL term in
(7) is to be maximized, and it can be easily unbounded; In typical situations, KL(q||Q) can become
arbitrarily large by having q concentrate on the region where Q has zero support. To this end, we
impose an upper barrier on the KL term, that is, BKL(q||Q) = max(C,KL(q||Q)), so that increasing
KL beyond the barrier point C gives no incentive. C = 500.0 works well empirically.
Similar degeneracy issues have been dealt with in the previous BVI approaches for non-VAE vari-
ational inference [8, 20]. Most approaches attempted to regularize small entropy when optimizing
the new components to be added. However, the entropy regularization may be less effective for the
iterative refinement of the mixture components within the VAE framework, since we have indirect
control of the component models (and their entropy values) only through the density parameter net-
works λ(x;φ) in qλ(x;φ)(z|x) (i.e., amortized inference). Furthermore, it encourages the component
densities to have large entropy all the time as a side effect, which can lead to a suboptimal solution in
certain situations. Our upper barrier method, on the other hand, regularizes the component density
only if they are too close (within the range of C KL divergence) to the current mixture, rendering
it better chance to find an optimal solution outside the C-ball of the current mixture. In fact, the
empirical results in Sec. 5.3 demonstrate that our strategy leads to better performance.
The nested loops in Alg. 1 may appear computationally costly, however, the outer loop usually takes
a few epochs (usually no more than 20) since we initialize all components qm identically with the
trained encoder parameters of the standard VAE (afterwards, the components quickly move away
from each other due to the BKL term). The mixture order M (the number of the inner iterations) is
typically small as well (e.g., between 1 and 4), which renders the algorithm fairly efficient in practice.

5

4 Related Work

The VAE’s issue of amortization error was raised recently [4], and the semi-amortized inference
approaches [11, 22, 14] attempted to address the issue by performing the SVI gradient updates at test
time. Alternatively one can enlarge the representational capacity of the encoder network, yet still
amortized inference. A popular approach is the flow-based models that apply nonlinear invertible
transformations to VAE’s variational posterior [30, 12]. The transformations could be complex autore-
gressive mappings, while they can also model full covariance matrices via efficient parametrization
to represent arbitrary rotations, i.e., cross-dimensional dependency. Our use of functional gradient
in designing a learning objective stems from the framework in [6, 23]. Mathematically elegant and
flexible in the learning criteria, the framework was more recently exploited in [3] to unify seemingly
different machine learning paradigms. Several mixture-based approaches aimed to extend the repre-
sentational capacity of the variational inference model. In [32] the variational parameters were mixed
with a flexible distribution. In [31] the prior is modeled as a mixture (aggregate posterior).
Boosted VI. Previously, there were approaches to boost the inference network in variational infer-
ence similar to our idea [8, 20, 21, 2, 24], where some of them [20, 21, 2] focused on theoretical
convergence analysis, inspired by the Frank-Wolfe [10] interpretation of the greedy nature of the
algorithm in the infinite-dimensional (function) space. However, these approaches all aimed for
stochastic VI in the non-VAE framework, hence non-amortized inference, whereas we consider
amortized inference in the VAE framework in which both the decoder and the inference model need
to be learned. We briefly summarize the main differences between the previous BVI approaches and
ours as follows: 1) We learn Q(z|x), a density functional of input x, while BVI optimizes Q(z),
a single variational density (not a function of x), and thus involves only single optimization. 2)
Within the VAE framework, as the decoder is not optimal in the course of training, we update the
decoder and all the inference components iteratively and repeatedly. 3) To avoid degeneracy in KL
maximization, we employ the bounded KL instead of BVI’s entropy penalization, better suited for
amortized inference and more effective in practice. 4) The instant impacts of the components, ε(x)
are also modeled input-dependent (as neural networks) rather than tunable scalars as in BVI.

5 Evaluations

We test the proposed recursive inference model3 on several benchmark datasets. We highlight
improved test likelihood scores and reduced inference time, compared to the semi-amortized VAEs.
We also contrast with flow models that aim to increase modeling accuracy using high capacity
encoders.
Competing approaches. VAE: The standard VAE model (amortized inference) [13, 28]. SA: The
semi-amortized VAE [11]. We fix the SVI gradient step size as 10−3, but vary the number of SVI steps
from {1, 2, 4, 8}. IAF: The autoregressive-based flow model for the encoder q(z|x) [12], which has
richer expressiveness than VAE’s Gaussian encoder. HF: The Householder flow encoder model that
represents the full covariance using the Householder transformation [30]. The numbers of flows for
IAF and HF are chosen from {1, 2, 4, 8}. ME: For a baseline comparison, we also consider the same
mixture encoder model, but unlike our recursive mixture learning, the model is trained conventionally,
end-to-end; all mixture components’ parameters are updated simultaneously. The number of mixture
components is chosen from {2, 3, 4, 5}. RME: Our proposed recursive mixture encoder model. We
vary the number of additional components M from {1, 2, 3, 4}, leading to mixture order 2 to 5. All
components are initialized identically with the VAE’s encoder. See Supplement for the details.
Datasets. MNIST [18], OMNIGLOT [17], SVHN [25], and CelebA [19]. We follow train/test
partitions provided in the data, where 10% of the training sets are randomly held out for validation.
For CelebA, we randomly split data into 80%/10%/10% train/validation/test sets.
Network architectures. We adopt the convolutional neural networks for the encoder and decoder
models for all competing approaches. This is because the convolutional networks are believed to
outperform fully connected networks for many tasks in the image domain [16, 29, 27]. We also
provide empirical evidence in the Supplement by comparing the test likelihood performance between
the two architectures.4 For the details of the network architectures, refer to the Supplement.

3The code is publicly available from https://github.com/minyoungkim21/recmixvae
4Fully-connected decoder architectures are inferior to the deconvnet when the number of parameters are

roughly equal. This is why we exclude comparison with the recent [26], but see Supplement for the results.

6

https://github.com/minyoungkim21/recmixvae

Table 1: Test log-likelihood scores estimated by IWAE sampling. The parentheses next to model
names indicate: the number of SVI steps in SA, the number of flows in IAF and HF, and the mixture
order in ME and RME. The superscripts are the standard deviations. The best (on average) results
are boldfaced in red. In each column, the statistical significance of the difference between the best
model (red) and each competing model, is depicted as color: anything non-colored indicates p ≤ 0.01
(strongly distinguished), p ∈ (0.01, 0.05] as yellow-orange, p ∈ (0.05, 0.1] as orange, p > 0.1 as
red orange (little evidence of difference) by the Wilcoxon signed rank test. Best viewed in color.

Dataset MNIST OMNIGLOT SVHN CelebA
dim(z) 20 50 20 50 20 50 20 50

VAE 930.73.9 1185.73.9 501.61.6 801.64.0 4054.514.3 5363.721.4 12116.425.3 15251.939.7

SA(1) 921.22.3 1172.11.8 499.32.5 792.77.9 4031.519.0 5362.135.7 12091.121.6 15285.829.4

SA(2) 932.02.4 1176.33.4 501.02.7 793.14.8 4041.515.5 5377.023.2 12087.121.5 15252.729.0

SA(4) 925.52.6 1171.33.5 488.21.8 794.41.9 4051.922.2 5391.720.4 12116.320.5 15187.327.9

SA(8) 928.13.9 1183.23.4 490.32.8 799.42.7 4041.69.5 5370.818.5 12100.622.8 15096.527.2

IAF(1) 934.03.3 1180.62.7 489.91.9 788.84.1 4050.09.4 5368.311.5 12098.020.6 15271.228.6

IAF(2) 931.43.7 1190.11.9 494.91.4 795.72.7 4054.610.5 5360.010.0 12104.521.8 15262.227.8

IAF(4) 926.32.6 1178.11.6 496.02.0 775.12.2 4048.68.7 5338.110.2 12094.622.6 15261.028.1

IAF(8) 934.12.4 1150.02.2 498.82.3 774.72.9 4042.09.6 5341.810.1 12109.322.0 15241.527.9

HF(1) 917.22.6 1204.34.0 488.62.0 795.93.3 4028.89.7 5372.010.1 12077.231.4 15240.527.6

HF(2) 923.93.1 1191.510.8 495.91.8 784.54.8 4030.79.9 5376.610.2 12093.025.6 15258.230.3

HF(4) 927.32.8 1197.21.5 487.02.7 799.73.2 4038.49.7 5371.89.8 12082.027.0 15266.529.5

HF(8) 928.53.1 1184.11.8 488.32.4 794.64.0 4035.98.9 5351.111.1 12087.325.5 15248.729.7

ME(2) 926.73.0 1152.81.7 491.71.4 793.43.8 4037.211.0 5343.213.1 12072.723.3 15290.529.3

ME(3) 933.14.1 1162.84.7 491.22.1 807.54.9 4053.816.1 5367.715.8 12100.321.7 15294.628.3

ME(4) 914.72.3 1205.12.3 491.31.8 732.03.1 4061.312.0 5191.918.5 12092.222.6 15270.720.6

ME(5) 920.61.9 1198.53.5 478.02.8 805.73.8 4057.512.2 5209.212.8 12095.325.1 15268.827.5

RME(2) 943.91.6 1201.70.9 508.21.2 821.03.1 4085.39.7 5403.210.2 12193.123.5 15363.031.7

RME(3) 945.11.6 1202.41.0 507.51.1 820.40.9 4085.99.8 5405.110.4 12192.323.5 15365.631.4

RME(4) 945.21.6 1203.11.0 509.01.2 819.90.9 4080.79.9 5403.810.2 12192.623.4 15364.331.5

RME(5) 945.01.7 1203.71.0 509.11.4 819.90.9 4086.910.9 5405.58.5 12194.211.5 15366.212.7

Table 2: Test data log-
likelihood scores for
the Binary MNIST.
Our results are in the
column titled “CNN”.
The column “FC” is
excerpted from [26].

CNN FC

VAE -84.49 -85.38
SA(1) -83.64 -85.20
SA(2) -83.79 -85.10
SA(4) -83.85 -85.43
SA(8) -84.02 -85.24
IAF(1) -83.37 -84.26
IAF(2) -83.15 -84.16
IAF(4) -83.08 -84.03
IAF(8) -83.12 -83.80
HF(1) -83.82 -85.27
HF(2) -83.70 -85.31
HF(4) -83.87 -85.22
HF(8) -83.76 -85.41
ME(2) -83.77 -
ME(3) -83.81 -
ME(4) -83.83 -
ME(5) -83.75 -
VLAE(2) - -83.72
VLAE(3) - -83.84
VLAE(4) - -83.73
VLAE(5) - -83.60
RME(2) -83.14 -
RME(3) -83.14 -
RME(4) -83.09 -
RME(5) -83.15 -

Experimental setup. We vary the latent dim(z), small (20) or large (50).5 To
report the test log-likelihood scores log p(x), we use the importance weighted
sampling estimation (IWAE) method [1] with 100 samples (Supplement for
details). For each model/dataset, we perform 10 runs with different random
train/validation splits, where each run consists of three trainings by starting
with different random model parameters, among which only one model with
the best validation result is chosen.

5.1 Results
The test log-likelihood scores are summarized in Table 1.6 Overall the results
indicate that our recursive mixture encoder (RME) outperforms the competing
approaches consistently for all datasets. To see the statistical significance,
we performed the one-sided Wilcoxon signed rank test for every pair (the
best model, non-best model). The results indicate that this superiority is
statistically significant.

Comparison to ME. With one exception, specifically ME (4) with dim(z) =
50 on the MNIST, the blind end-to-end mixture learning (ME) consistently
underperforms our RME. As also illustrated in Fig. 1, the blind mixture
estimation can potentially suffer from mixture collapsing and single dominant
component issues. The fact that even the VAE often performs comparably to
the ME with different mixture orders supports this observation. On the other
hand, our recursive mixture estimation is more robust to the initial parameters.
Due to its incremental learning nature, it "knows" the regions in the latent
space ill-represented by the current mixture, then updates mixture components
to complement those regions. This strategy allows the RME to effectively
model highly multi-modal posterior distributions, yielding more robust and
accurate variational posterior approximation.

Comparison to SA. The semi-amortized approach (SA) sometimes achieves
improvement over the VAE, but not consistently. In particular, its performance

5The results for dim(z) = 10 and 100, also on the CIFAR10 dataset [15], are reported in the Supplement.
6The MNIST results mismatch those reported in the related work (e.g., [31]). Significantly higher scores.

This is because we adopt the Gaussian decoder models, not the binary decoders, for all competing methods.

7

is generally very sensitive to the number of SVI gradient update steps. This is another drawback of
the SA, where the gradient-based adaption has to be performed at the test time. Although one could
adjust the gradient step size (in place of currently used fixed step size) to improve the performance,
there is little principled way to tune the step size at test time that can attain optimal accuracy and
inference time trade off. The number of SVI steps in the SA may correspond to the mixture order in
our RME model, and the results show that increasing the mixture order usually improves, and not
deteriorate, the generalization performance.

Comparison to IAF/HF. Although flow models have rich representational capacity, possibly with
full covariance matrices (HF), the improvement over the VAE is limited compared to our RME;
the models sometimes perform not any better than the VAE. The failure of the flow-based models
may originate from the difficulty of optimizing the complex encoder models. (Similar observations
were made in related previous work [26]). This result signifies that sophisticated and discriminative
learning criteria are critical, beyond just enlarging the structural capacity of the neural networks,
similarly observed from the failure of conventional mixtures.

Non-Gaussian likelihood model. Our empirical evaluations were predominantly conducted with
the convolutional architectures on real-valued image data. For the performance of our model with
non-convolutional (fully connected) network architectures, the readers can refer to Table 5 and 6 in
the supplementary material. For the binarized input images, we have conducted extra experiments
on the Binary MNIST dataset. The binary images can be modeled by a Bernoulli likelihood in the
decoder. Table 2 summarized the results. We have set the latent dimension dim(z) = 50, and used
the same CNN architectures as before, except that the decoder output is changed from Gaussian to
Bernoulli. We also include the reported results from [26] for comparison, which employed the same
latent dimension 50 and fully connected encoder/decoder networks with similar model complexity
as our CNNs’. As shown, IAF and our RME performs equally the best, although the performance
differences among the competing approaches are not very pronounced compared to real-valued image
cases.

5.2 Test Inference Time
Another key advantage of our recursive mixture inference is the computational efficiency of test-time
inference, comparable to that of VAE. Unlike the semi-amortized approaches, where one performs
the SVI gradient adaptation at test time, the inference in our RME is merely a single feed forward
pass through our mixture encoder network. That is, once training is done, our mixture inference
model remains fixed, with no adaptation required.

To verify this empirically, we measure the actual inference time for the competing approaches.
The per-batch test inference times (batch size 128) on all benchmark datasets are shown in Tab. 3.

Table 3: Inference time (milliseconds).
MNIST OMNIG. SVHN CELEBA

VAE 3.6 4.8 2.2 2.7
SA(1) 9.7 11.6 7.0 8.4
SA(2) 18.1 19.2 15.5 13.8
SA(4) 32.2 34.4 30.1 27.1
SA(8) 60.8 65.7 60.3 53.8
IAF(1) 4.8 5.7 3.4 4.4
IAF(2) 5.9 6.4 3.7 5.1
IAF(4) 6.2 7.0 4.7 5.7
IAF(8) 7.7 8.2 5.7 7.7
RME(2) 4.7 5.4 3.2 4.2
RME(3) 4.9 5.5 3.6 4.1
RME(4) 4.6 5.3 3.5 4.2
RME(5) 4.8 5.6 3.3 4.8

To report the results, for each method and each dataset, we
run the inference over the entire test set batches, measure the
running time, then take the per-batch average. We repeat the
procedure five times and report the average. All models are
run on the same machine with a single GPU (RTX 2080 Ti),
Core i7 3.50GHz CPU, and 128 GB RAM. While we only
report test times for dim(z) = 50, the impact of the latent
dimension appears to be less significant.

As expected, the semi-amortized approach suffers from the
computational overhead of test-time gradient updates, with
the inference time significantly increased as the number of
updates increases. Our RME is comparable to VAE, and faster
than IAF (with more than a single flow), which verifies our
claim. Interestingly, increasing the mixture order in our model
rarely affects the inference time, due to intrinsic parallelization of the feed forward pass through the
multiple mixture components networks, leading to inference time as fast as that of VAE.

5.3 Comparison with Boosted VI’s Entropy Regularization
Recall that our RME adopted the bounded KL (BKL) loss to avoid degeneracy in the component
update stages. Previous boosted VI (BVI) approaches employ different regularization, namely
penalizing small entropy for the new components. However, such indirect regularization can be

8

Table 4: Comparison with the BVI’s entropy regularization [20]. The same color scheme as Tab. 1.
Dataset MNIST OMNIGLOT SVHN CelebA
dim(z) 20 50 20 50 20 50 20 50

RME(2) 943.91.6 1201.70.9 508.21.2 821.03.1 4085.39.7 5403.210.2 12193.123.5 15363.031.7

RME(3) 945.11.6 1202.41.0 507.51.1 820.40.9 4085.99.8 5405.110.4 12192.323.5 15365.631.4

RME(4) 945.21.6 1203.11.0 509.01.2 819.90.9 4080.79.9 5403.810.2 12192.623.4 15364.331.5

RME(5) 945.01.7 1203.71.0 509.11.4 819.90.9 4086.910.9 5405.58.5 12194.211.5 15366.212.7

BVI(2) 939.72.8 1196.22.8 507.92.2 817.13.3 4077.310.3 5388.210.2 12133.525.1 15206.428.2

BVI(3) 939.52.9 1191.62.9 507.82.2 816.63.4 4076.610.3 5384.210.5 12146.522.4 15249.528.1

BVI(4) 937.82.9 1191.62.8 507.82.3 816.83.4 4073.110.2 5371.110.4 12127.722.3 15085.828.4

BVI(5) 931.23.0 1183.12.9 508.22.3 816.43.3 4071.210.2 5378.110.1 12092.322.3 15052.528.0

less effective for the iterative refinement of the mixture components within the VAE framework (the
second last paragraph of Sec. 3.1). To verify this claim, we test our RME models with the BKL loss
replaced by the BVI’s entropy regularization. More specifically, following the scheme of [20], we
replace our BKL loss by ν · Eq(z|x)[− log q(z|x)] estimated by Monte Carlo, where ν = 1/

√
t+ 1

is the impact that decreases as the training iteration t.7 See Tab. 4 for the results. This empirical
result demonstrates that our bounded KL loss consistently yields better performance than entropy
regularization. We also observe that our BKL loss leads to numerically more stable solutions: For
entropy regularization, we had to reduce the learning rate to the tenth of that of BKL to avoid NaNs.

6 Conclusion
In this work we addressed the challenge of improving traditional, amortized inference in VAEs using
a mixture of inference networks approach. We demonstrated that this method is both effective in
increasing the accuracy of inference and computationally efficient, compared to state-of-the-art semi-
amortized inference approaches. This is, in part, due to the effectiveness of the functional recursive
mixture learning algorithm we devise and the nature of the inference model, which does not need to be
adapted during the test phase. As a consequence, our approach yields higher test data likelihood than
the competing approaches on several benchmark datasets, but remains as computationally efficient as
the conventional VAE inference. Our recursive model currently requires users to supply the mixture
order as an input to the algorithm. In our future work, we aim to investigate principled ways of
selecting the mixture order (i.e., model augmentation stopping criteria). We also seek to apply our
model to domains with structured data, including sequences (e.g., videos, natural language sentences)
and graphs (e.g., molecules, 3D shapes).

Broader Impact

1. Who may benefit from this research? For any individuals, practitioners, organizations,
and groups who aim to identify the underlying generative process of the high-dimensional
structured data via the variational auto-encoding model framework, this research can be a
very useful tool that provides highly accurate solutions generalizable to unseen data.

2. Who may be put at disadvantage from this research? Not particularly applicable.

3. What are the consequences of failure of the system? Any failure of the system that
implements our algorithm would not do any serious harm since the failure can be easily
detectable at the validation stage, in which case alternative strategies or internal decisions
might be looked for.

4. Whether the task/method leverages biases in the data? Our method does not leverage
biases in the data.

References

[1] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders, 2016. In
Proceedings of the Second International Conference on Learning Representations, ICLR.

[2] Trevor Campbell and Xinglong Li. Universal boosting variational inference, 2019. In Advances in Neural
Information Processing Systems.

7We also tested a slight variant, [8]’s closed-form Gaussian entropy log detΣ where Σ is the (diagonal)
covariance of the new component q(z|x). The results were very similar to the scheme of [20]. See Supplement.

9

[3] Casey Chu, Jose Blanchet, and Peter Glynn. Probability functional descent: A unifying perspective on
GANs, variational inference, and reinforcement learning, 2019. International Conference on Machine
Learning.

[4] Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders. In
International Conference on Machine Learning, 2018.

[5] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, 2017.

[6] J. Friedman. Greedy function approximation: A gradient boosting machine, 1999. Technical Report, Dept.
of Statistics, Stanford University.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets, 2014. In Advances in Neural Information Processing Systems.

[8] Fangjian Guo, Xiangyu Wang, Kai Fan, Tamara Broderick, and David B Dunson. Boosting variational
inference. In arXiv preprint, 2016.

[9] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 13:1303–1347, 2013.

[10] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization, 2013. International
Conference on Machine Learning.

[11] Y. Kim, S. Wiseman, A. C. Millter, D. Sontag, and A. M. Rush. Semi-amortized variational autoencoders.
In International Conference on Machine Learning, 2018.

[12] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proving variational inference with inverse autoregressive flow, 2016. In Advances in Neural Information
Processing Systems.

[13] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes, 2014. In Proceedings of the
Second International Conference on Learning Representations, ICLR.

[14] R. G. Krishnan, D. Liang, and M. D. Hoffman. On the challenges of learning with inference networks on
sparse high-dimensional data. In Artificial Intelligence and Statistics, 2018.

[15] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images, 2009. Technical
report, Computer Science Department, University of Toronto.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks, 2012. In Advances in Neural Information Processing Systems.

[17] B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum. One-shot learning by inverting a compositional causal
process, 2013. In Advances in Neural Information Processing Systems.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), 2015.

[20] Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, and Gunnar Rätsch. Boosting black
box variational inference, 2018. In Advances in Neural Information Processing Systems.

[21] Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, and Gunnar Rätsch. Boosting variational inference:
an optimization perspective, 2018. AI and Statistics (AISTATS).

[22] J. Marino, Y. Yisong, and S. Mandt. Iterative amortized inference. In International Conference on Machine
Learning, 2018.

[23] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses.
In Advances in Large Margin Classifiers, MIT Press, 1999.

[24] Andrew C. Miller, Nicholas J. Foti, and Ryan P. Adams. Variational boosting: Iteratively refining posterior
approximations, 2017. International Conference on Machine Learning.

[25] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning. 2011.

[26] Yookoon Park, Chris Kim, and Gunhee Kim. Variational Laplace autoencoders. In International Conference
on Machine Learning, 2019.

[27] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In arXiv preprint, 2015.

[28] D.J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in
deep generative models, 2014. International Conference on Machine Learning.

[29] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. In arXiv preprint, 2013.

[30] J. M. Tomczak and M. Welling. Improving variational autoencoders using Householder flow, 2016. In
Advances in Neural Information Processing Systems, Workshop on Bayesian Deep Learning.

[31] Jakub M. Tomczak and Max Welling. VAE with a VampPrior, 2018. Artificial Intelligence and Statistics.
[32] Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference, 2018. International Conference

on Machine Learning.
[33] O. Zobay. Variational bayesian inference with gaussian-mixture approximations. Electron. J. Statist.,

8(1):335–389, 2014.

10

	Introduction
	Background
	Recursive Mixture Inference Model (Proposed Method)
	Optimization Strategy

	Related Work
	Evaluations
	Results
	Test Inference Time
	Comparison with Boosted VI's Entropy Regularization

	Conclusion

