Not All Bits have Equal Value: Heterogeneous Precisions via Trainable Noise

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Pedro Savarese, Xin Yuan, Yanjing Li, Michael Maire

Abstract

We study the problem of training deep networks while quantizing parameters and activations into low-precision numeric representations, a setting central to reducing energy consumption and inference time of deployed models. We propose a method that learns different precisions, as measured by bits in numeric representations, for different weights in a neural network, yielding a heterogeneous allocation of bits across parameters. Learning precisions occurs alongside learning weight values, using a strategy derived from a novel framework wherein the intractability of optimizing discrete precisions is approximated by training per-parameter noise magnitudes. We broaden this framework to also encompass learning precisions for hidden state activations, simultaneously with weight precisions and values. Our approach exposes the objective of constructing a low-precision inference-efficient model to the entirety of the training process. Experiments show that it finds highly heterogeneous precision assignments for CNNs trained on CIFAR and ImageNet, improving upon previous state-of-the-art quantization methods. Our improvements extend to the challenging scenario of learning reduced-precision GANs.