
Not All Bits have Equal Value:
Heterogeneous Precisions via Trainable Noise

Pedro Savarese
TTI-Chicago

savarese@ttic.edu

Xin Yuan
University of Chicago
yuanx@uchicago.edu

Yanjing Li
University of Chicago

yanjingl@uchicago.edu

Michael Maire
University of Chicago

mmaire@uchicago.edu

Abstract

We study the problem of training deep networks while quantizing parameters and
activations into low-precision numeric representations, a setting central to reducing
energy consumption and inference time of deployed models. We propose a method
that learns different precisions, as measured by bits in numeric representations,
for different weights in a neural network, yielding a heterogeneous allocation
of bits across parameters. Learning precisions occurs alongside learning weight
values, using a strategy derived from a novel framework wherein the intractability
of optimizing discrete precisions is approximated by training per-parameter noise
magnitudes. We broaden this framework to also encompass learning precisions for
hidden state activations, simultaneously with weight precisions and values. Our
approach exposes the objective of constructing a low-precision inference-efficient
model to the entirety of the training process. Experiments show that it finds highly
heterogeneous precision assignments for CNNs trained on CIFAR and ImageNet,
improving upon previous state-of-the-art quantization methods. Our improvements
extend to the challenging scenario of learning reduced-precision GANs.

1 Introduction

Scaling up the size of deep neural networks offers returns to accuracy in tasks across a range of
application areas, including computer vision and natural language processing. Expanding network
depth from tens of layers [23, 44] to a hundred [13, 52] revolutionized image classification and
object detection [9, 14]. Following the 340M parameter BERT model [4], the size of state-of-the-art
language models has increased by multiple orders of magnitude: GPT-2 with 1.5B [40], GPT-3 with
175B, and recently Megatron-Turing with 530B parameters [45] – more than a 1000-fold increase in
size over BERT. Larger models increase the computational cost of inference, posing challenges to
their deployment in real-world applications.

To ameliorate these costs, multiple research avenues have explored methods for constructing more
compact deep networks while preserving accuracy comparable to larger models. These include, e.g.,
architectural building blocks with sparser connectivity [17, 37, 54, 16] or efficient dimensionality
reduction stages [20]. Another category of approaches shrinks larger models via pruning [11, 31, 29,
8, 24, 43], reducing precision [12, 19, 51], or binarization [18, 41, 35, 38]. Parallel efforts on neural
architecture search [57, 36, 27, 32, 28, 49] optimize coarser aspects of model structure by automating
exploration of hyperparameters governing network size and configuration of layers.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



  

update

perturb

evaluate

    

evaluate

 
 

perturb

update

 
 

update

 
 

 

perturb
evaluate

Figure 1: Weight noise as a differentiable proxy for precision. A learnable magnitude δ scales
uniform random noise added to weight w during training. The width of the basin over which it is
possible to perturb w without increasing task loss L drives learning of δ. After training, we reduce the
bit precision of the numeric representation of w as much as possible, with the constraint of remaining
in the (w − δ, w + δ) range. Left: A random perturbation w̃ increases loss, driving a decrease in δ.
Middle: Perturbation leaves loss unchanged, driving an increase in δ. Right: Noise level δ, and the
corresponding implied precision, stabilize when matched to the size of the basin.

Yet, these methods fall short of providing a complete framework for producing efficient networks.
Pruning, quantization, and binarization are often implemented as heuristic post-processing transforma-
tions that operate on a trained network [12, 25] or require special training procedures [18, 41, 53, 56].
Section 2 provides a broader survey. The lack of modular approaches to optimizing the network
structure at this finest level of detail complicates potential combination with neural architecture search
techniques for selecting the functional form of layers and building blocks at coarser granularity.

We introduce a principled framework for training compact neural networks, which encompasses prun-
ing, quantization, and binarization. Each is a special case of learning a more general heterogeneous
mixed-precision architecture, wherein a set of auxiliary parameters govern the bit precision of each
weight in the original network architecture. Our approach learns auxiliary parameters simultaneously
with learning the original parameters (weights), with training driven entirely by stochastic gradient
descent. In addition to modularity, this strategy provides two crucial benefits:

• Unlike schemes which post-process a trained network, our method makes the entirety of the
training process aware of the goal of producing a reduced-precision model. Learning weights in
the same context as quantization avoids divergence between training and inference scenarios.

• The auxiliary parameters can freely participate in the definition of the loss being optimized during
training. We can craft loss terms that approximate actual costs (e.g., in computation or energy
usage) of inference as determined by the current configuration of numeric precisions. Combined
with the task-specific loss term, we can choose how to trade-off accuracy and efficiency.

Key to our technical approach is correspondence between a notion of noisy weights and numeric
precision. Specifically, during training, we instantiate each network weight as a full-precision value
plus uniform random noise of a learnable magnitude. These noise magnitudes are precisely the
auxiliary parameters. The more noise that can be injected into the value of a particular weight without
increasing loss, the lower the precision required to represent that weight.

Figure 1 illustrates the intuition behind this correspondence. During training, noise magnitudes serve
as a differentiable proxy for discrete bit precisions. Upon completion of training, the learned noise
magnitudes dictate replacement of noisy weights with fixed, reduced-precision values. Though related
to Bayesian neural networks, our formulation differs substantially from prior work on Bayesian
approaches to network pruning and quantization [30]. Section 3 provides details, with complete
derivations in Appendix A.

Our method is able to allocate precisions under any level of granularity (e.g., per-parameter, per-layer)
by sharing the trainable noise magnitude variables across different parameters. Although a per-layer
precision scheme is a more natural fit for current GPUs, new hardware designs can leverage more

2



fine-grained and heterogeneous schemes [34, 46, 21]; hence, we focus on the limit of granularity
where each parameter has its own precision. This setting has the potential to achieve significant
energy efficiency and run-time advantages over the per-layer setting without sacrificing accuracy, as
suggested by our empirical evidence. Future commercially available accelerators, based on the latest
hardware research, could make these advantages real.

 

Figure 2: Multidimensional example
where different precisions should be as-
signed to each parameter due to their dis-
tinct perturbation limits. Note the con-
nection between each parameter’s pertur-
bation limit, the width of the level curve
in the parameter’s axis, and the allocated
precision for each parameter.

Results in Section 4 show that, on standard benchmarks
such as creating weight-quantized CNNs for image clas-
sification on CIFAR-10 and ImageNet, our approach out-
performs competitors by achieving higher accuracy using
fewer bits per parameter. Further experiments show similar
improvements when training GANs. We also show empiri-
cally that, when extended to quantize hidden activations of
a network, our method is able to find heterogeneous preci-
sion schemes and outperforms well-established activation
quantization methods.

The source of our advantages may span both the ability to
simultaneously account for precision and task objectives
within the training dynamics, as well as the ability to
learn heterogeneous weight precisions at the finest level
of granularity.

2 Related Work

Most approaches in the quantization literature assume
that a predefined precision is given prior to training
[55, 53, 10, 51, 19, 33, 3, 26, 12, 6], designating the num-
ber of bits used to represent each parameter of the network.
The focus of these works is typically to circumvent the
obstacle posed by the non-differentiability of the quanti-
zation function, as this makes first-order methods inapt to
train quantized models due to the lack of meaningful gradients.

DoReFa [55] updates real-valued weights using gradients w.r.t. their quantized forms (i.e., a straight-
through estimator [1]), enabling training over quantized parameter values with gradient descent.
LQ-Nets [53], PACT [3], and LSQ [6] introduce further flexibility to quantization by also optimizing
the quantization step size, which we refer by quantization scale throughout our work, i.e., the real
value that each bit corresponds to is also learned.

DSQ [10] proposes a smooth approximation to the quantization mapping, which allows weights to be
directly trained with SGD without straight-through estimators. SLB [51] introduces per-parameter
auxiliary variables that induce distributions over values that quantized weights can take – these
variables are trained with gradient descent and a final quantized model is created by approximating
each weight’s distribution by a point-mass.

More recently, some works on quantization have explored ways to assign different precisions to
parameter groups in a neural network [48, 47, 5, 50] – such methods, however, remain a minority in
the quantization literature. DNAS [48] uses neural architecture search to map candidate precisions
to different parameter groups. HAQ [47] uses reinforcement learning to learn a quantization policy.
HAWQ [5] uses second-order information to allocate precisions to different parameter groups.

Closest to our work is BSQ [50], which introduces new variables that are trained with gradient-based
methods, which are then used to allocate precisions throughout the network. It operates by first
mapping each real-valued weight to a bitstring variable whose length is chosen a-priori. These
variables are then iteratively trained with gradient descent and pruned based on their magnitudes,
resulting in a decrease in precision whenever a component (a bit) of the bitstring is removed. Finally,
the bitstrings are mapped back to weights, and the quantized model undergoes fine-tuning by adopting
straight-through estimators for the quantized weights.

Lastly, Fan et al. [7] improve the performance of quantized networks by randomly selecting a subset
of weights to be quantized during training while keeping the remaining parameters in their original

3



Algorithm 1 SMOL

1: procedure SMOL (w ∈ Rd, L : Rd → R, λ ∈ R, pinit ∈ N)
2: Instantiate parameters s ∈ Rd and initialize sinit = − ln

(
2pinit−1 − 1

)
3: for t = 1→ T1 do
4: Sample ε(t) ∼ Ud(±1)
5: Compute L(w, s) = L(w + σ(s)� ε(t)) + λ‖ log2(1 + e−s)‖1 and∇w,sL(w, s)
6: Update w and s using∇wL(w, s) and∇sL(w, s)
7: Clip w to ±(2− σ(s))
8: end for
9: Set p = 1 + round(log2(1 + e−s))

10: ZPA (Optional): If |w| < |w − q(w, p)| then set p = 0 (element-wise)
11: for t = T1 → T2 do
12: Compute L(wq) and∇wq

L(wq), where wq = q(w, p)
13: Update w using ∇wq

L(wq) instead of∇wL(wq)
14: end for
15: end procedure

format. While our approach also uses randomness to improve quantization in some fashion, the form
of noise samples, along with how and why they are used, are vastly different.

3 Method

3.1 Allocating Precisions by Optimizing Noise Magnitudes

We consider the problem of allocating a precision p (a positive integer which represents the number
of bits) to each weight w of a network under a total precision budget (the total number of bits that can
be used to represent the model). If we let q(w, p) denote the quantization of w with p many bits, then
our goal is to minimize L(q(w, p)) subject to p ≤ C, where C is our total budget measured in bits
and L captures the loss incurred by the weights – typically the cross-entropy loss over a training set.

Although our method is the result of a rigorous sequence of approximations to the objective described
above, it admits an intuitive description and motivation that relies on a connection between quanti-
zation and perturbations. More specifically, if we assume that a weight w can be perturbed in any
direction by at least ε without degrading the performance of the network, then we can safely represent
w with p bits as long as the quantization error does not exceed ε – that is, |w − q(w, p)| ≤ ε.
In other words, if we know the largest perturbation that each weight admits (its perturbation limit)
without yielding performance degradation, then we can easily assign a precision to each weight:
it suffices to choose the smallest number of bits such that the quantization error falls below the
perturbation limit of the corresponding weight.

Our method works by estimating the perturbation limit of each parameter to be quantized, which
is achieved by directly optimizing the magnitude of the weight perturbations through a novel loss
function. We call our method SMOL : Searching for Mixed-Precisions by Optimizing Limits for
Perturbations.

Once the perturbation limit of each weight has been estimated through optimization by our method,
we assign per-weight precisions by mapping each perturbation limit to a number of bits.

More specifically, for a model with weight parameters w and training loss L, our method first
introduces new parameters s of the same shape as w, and at each iteration t aims to update w, s to
decrease an augmented loss function:

L
(
w + σ(s)� ε(t)

)
+ λ
∥∥∥ log2(1 + e−s)

∥∥∥
1
, (1)

where ε(t) has the same size as s and whose components are independently sampled from an
uniform distribution over the interval [−1,+1], and λ controls the trade-off between performance and
representational cost – a larger value for λ will place more importance on using less bits to represent
weights compared to achieving small loss. Note that the noise samples ε(t) are independent across

4



different iterations, i.e., we draw a new sample ε(t) at each iteration t. Here, the term σ(s) represents
the perturbation limit estimates of the weights w: the distance between w and w + σ(s)� ε(k) is at
most σ(s) since εk is between −1 and +1.

A key aspect of our proposed loss function lies in the fact that it is fully differentiable w.r.t. to s;
hence, gradient-based methods like SGD and Adam can be applied off-the-shelf to optimize both the
original weights w and the auxiliary variables s. This enables the parameters s to be seen as being
part of the model itself, allowing for our method to be easily combined with higher-order optimizers,
neural architecture search, and other algorithms that operate on networks. After training, we map the
final values of s to precisions via some function d·c that outputs integers e.g., rounding or truncation:

p = 1 + dlog2(1 + e−s)c . (2)

The resulting tensor p will have the same shape as w, and its components represent the number of
bits assigned to each parameter in w. Having allocated a precision to each weight parameter, we can
discard the auxiliary variables s and use quantized weights wq = q(w, p) to compute the model’s
predictions instead of applying perturbations. This will typically lead to non-negligible changes in
the model’s activations, which we circumvent by fine-tuning the model by further optimizing w to
minimize the training loss. Following prior work, we use straight-through estimators to optimize w
since q is non-differentiable, i.e., we set∇wL = ∇wq

L and perform gradient descent on w.

Lastly, note that inverting the s → p mapping offers a way to initialize s given a desired initial
precision pinit, more specifically we set sinit = − ln

(
2pinit−1 − 1

)
. For example, adopting an

initial precision pinit = 8 results in sinit = − ln(28−1 − 1) = − ln(127), and the perturbation limit
estimate will start as σ(sinit) = 21−pinit = 2−7 for all weights w of the network.

Our method is also applicable if groups of parameters must share the same precision value e.g., the
layer-wise setting where all parameters of each layer are represented with the same number of bits.
In this case, we assign each parameter group i to a single component si of s, and when applying
perturbations to the weights in the group we scale all the noise samples by the same scalar σ(si). At
the end of training, we map si to a single integer pi via (2) which is shared across the group.

3.2 Zero Precision Allocation

A fundamental limitation of having each i’th bit map to either +21−i or −21−i is that zero weights
cannot be represented: the possible values that a 1-bit weight can assume are {−1,+1}, for a 2-
bit weight {−1.5,−0.5,+0.5,+1.5}, and moreover a quantized weight cannot assume the value 0
regardless of its precision. However, in our setting – where we can assign a different precision to
each weight – we can directly re-define the quantization function q to map any w to 0 whenever
p = 0, hence introducing the notion of zero-precision weights. This is analogous to the procedure
of assigning zero precision to a filter in BSQ, which leads to the corresponding convolution to be
completely skipped when computing a model’s outputs.

We propose to assign zero precision to a weight w whenever |w| ≤ |w − q(w, p)|. Since the
quantization function q maps w to the closest value that is representable with p bits, whenever
a weight’s precision is set to zero due to our proposed strategy, the induced quantization error
is guaranteed not to increase. This follows since prior to changing p the quantization error is
|w − q(w, p)|; but once we set p = 0, it becomes |w − q(w, 0)| = |w − 0| = |w|, which cannot lead
to an increase since the condition is precisely |w| ≤ |w − q(w, p)|.
For example, q(w = 0.2, p = 2) = 0.5 since it is the value in {−1.5,−0.5,+0.5,+1.5} that is
closest tow = 0.2, while q(w = 0.2, p = 0) = 0 following our re-definition of q yields a quantization
error of |0.2− 0| = 0.2. On the other hand, for p = 2 we have |0.5− 0.2| = 0.3. Hence, assigning
zero precision in this case not only frees up 2 bits but also decreases the quantization error by 0.1.

One advantage of adopting this procedure to assign zero precisions to weights is that it only changes q
and hence the quantized network, therefore not affecting the procedure described in the previous sec-
tion. In other words, one can allocate precisions to weights by optimizing perturbations as described
previously, and then quantize the model separately with and without zero precision allocation.

This results in two quantized models with different precision assignments, hence we can obtain two
networks by training the auxiliary variables s only once. The notion of zero precisions also unifies
quantization and pruning, since in practice assigning zero precision is equivalent to pruning a weight.

5



Figure 3: Performance of SMOL and BSQ when
quantizing a ResNet-20 trained on CIFAR-10.
SMOL-L denotes SMOL with layer-wise preci-
sions.

Figure 4: Performance of SMOL , BSQ, and
LQ-Nets when quantizing a ResNet-50 trained
on ImageNet. SMOL* denotes SMOL with zero-
precision allocation.

4 Results

We evaluate our method in the tasks of quantizing CNNs trained for image classification and
generation. For all experiments, we adopt an initial precision pinit = 8, which corresponds to
initializing each component of the new parameter s as − ln(27 − 1) ≈ −4.84.

Table 1: Performance of different quantization
methods on ResNet-20 when trained on CIFAR-10.
* denotes results with Zero Precision Allocation.

ResNet-20

Method Precision Avg. Bpp ↓ Test
Granularity (Ratio ↑) Acc. (%)

LQ-FP 32.0 (1.0) 92.1
BSQ-FP 32.0 (1.0) 92.6

LQ-Nets Network 1.0 (32.0) 90.1
DSQ Network 1.0 (32.0) 90.2
SLB Network 1.0 (32.0) 90.6

LQ-Nets Network 2.0 (16.0) 91.8
SLB Network 2.0 (16.0) 92.0
SMOL* Parameter 1.3 (24.6) 91.5
SMOL* Parameter 1.7 (18.8) 92.6

LQ-Nets Network 3.0 (10.7) 92.0
BSQ Layer 2.7 (11.9) 91.9
SMOL-L Layer 2.4 (13.3) 92.4
SMOL Parameter 2.1 (15.2) 92.5
SMOL Parameter 2.5 (12.8) 92.8

BSQ Layer 3.2 (10.0) 92.8
SMOL-L Layer 3.2 (10.0) 93.0
SMOL Parameter 2.8 (11.4) 93.0

We use the floor operation to map real-valued
precisions to integers: based on our preliminary
experiments this more aggressive rounding op-
eration yields more compact models and rarely
results in performance degradation.

For all experiments we train the auxiliary pa-
rameters s with Adam [22], using the default
learning rate of 10−3 and no weight decay – all
its other hyperparameters are set to their default
values.

We run SMOL with and without Zero Precision
Allocation: allowing for zero precisions results
in more compact models, and we use SMOL*
to denote results with zero precision allocation.
When allocating per-layer precisions, we refer
to our method as SMOL-L.

To compare different methods we measure the
performance and the size of the resulting net-
work. We report the average number of bits
assigned to the model’s weights (the sum of all
precisions divided by the number of weights),
which we refer to as ‘average bpp’, along with
the compression ratio relative to a full-precision
model, which equals to 32 divided by the aver-
age bpp. Appendix D.4 provides preliminary
experiments with Transformers.

4.1 Image Classification on CIFAR-10

We first compare SMOL against different quantization methods on the small-scale CIFAR-10 dataset,
adopting different networks to evaluate how aggressively each method can quantize weights without
degrading the model’s generalization performance. Since prior works typically rely on other methods
to quantize activations (e.g., using PACT [3] for activations while applying a new method to the
weights), we only consider results with full-precision activations for CIFAR-10 as this isolates each
method’s performance to its ability to quantize weights, leading to a more direct comparison.

6



Table 2: Performance of SMOL and BSQ on
MobileNetV2 and ShuffleNet when trained on
CIFAR-10.

MobileNetV2 ShuffleNet

Method Avg. Test Avg. Test
Bpp ↓ Acc. Bpp ↓ Acc.

FP 32.0 94.4 32.0 90.7

BSQ 2.8 94.1 3.4 91.8
SMOL 1.5 94.5 1.8 91.6
SMOL 1.7 94.8 2.9 92.0

We adopt the standard data augmentation procedure
of applying random translations and horizontal flips
to training images, and train each network for a to-
tal of 650 epochs: the precisions are trained with
SMOL for the first 350 while the remaining 300
are used to fine-tune the weights while the preci-
sions remain fixed. Note that this training budget
assigned to our method is considerably smaller than
BSQ’s 1000 total epochs which are split between
pre-training, precision allocation, and fine-tuning.

Following prior work, we keep the batch normaliza-
tion parameters in full-precision as they represent
a small fraction of the network’s total parameters.
Like in BSQ, weights of parameterized shortcut
connections are also kept in full-precision – namely,
shortcuts that consist of 1×1 convolutions followed
by normalization in ResNet-20 and MobileNetV2.

To train the weights we use SGD with a momentum of 0.9 and an initial learning rate of 0.1, which is
decayed at epochs 250, 500, and 600. We use a batch size of 128 and a weight decay of 10−4 for
ResNet-20, 4 · 10−5 for MobileNetV2, and 5 · 10−4 for ShuffleNet.

ResNet-20 results are given in Table 1: SMOL comfortably outperforms BSQ and other competing
methods by offering higher performance at lower precision. Comparing against BSQ’s 91.9%
accuracy at 2.7 bpp, SMOL provides 0.6% higher accuracy at 0.6 lower bpp (92.5% at 2.1 bpp). With
zero-precision allocation (SMOL*), our method outperforms BSQ by 0.7% at 1.0 lower bpp (92.6%
at 1.7 bpp), and matches the performance of the full-precision model with a 18.8× compression ratio.

When allocating layer-wise precisions (SMOL-L), we observe a 0.5% higher accuracy at 0.3 lower
bpp compared to BSQ, showing that although per-parameter precisions improve efficiency, our
method outperforms the state-of-the-art even when constrained to the less flexible, layer-wise setting
(more details in Appendix D.1). Figure 3 shows efficiency curves for BSQ and SMOL-L.

Table 2 presents results for MobileNetV2 and ShuffleNet: SMOL also comfortably outperforms
BSQ, offering 0.7% higher accuracy at 1.1 lower bpp on MobileNetV2 (94.8% at 1.7 bpp, compared
to 94.1% at 2.8 bpp), and 0.2% higher performance at 0.5 lower bpp on ShuffleNet (92.0% at 2.9
bpp, compared to 91.8% at 3.4 bpp), while outperforming the full-precision model in both cases.
Additional empirical studies are provided in Appendix D.

4.2 ImageNet

For the large-scale ImageNet classification task, we quantize the ResNet-18 and ResNet-50 models
which allow for comparisons against LQ-Nets, DSQ, SLB, and BSQ. For both networks we train the
weight parameters with SGD, a momentum of 0.9, a weight decay of 10−4 and a batch size of 256
which is distributed across 4 GPUs. We follow LQ-Nets in terms of data augmentation.

We train ResNet-18 for a total of 180 epochs: the first 120 are used for precision training and the last
60 for fine-tuning, and SGD has an initial learning rate of 0.1 which is decayed by 10 at epochs 45,
90, 150, and 165.

For ResNet-50, we start from a pre-trained, full-precision model and train for 100 epochs: allocating
the first 60 for precision training and the remaining 40 for fine-tuning. An initial learning rate of
0.01 is decayed by 10 at epoch 30 for the precision training phase, while fine-tuning starts with
the same learning rate of 0.01 which is decayed by 10 at epochs 15 and 30. Note that, as in the
CIFAR-10 experiments, our training budget is considerably smaller than BSQ’s, which also starts
from a pre-trained model but has a budget of 180 additional epochs.

Results in Table 3 show that SMOL outperforms competing methods while achieving higher perfor-
mance than the full-precision baselines. On ResNet-18, our method offers 0.6% higher accuracy than
LQ-Nets at 1.7 lower bpp (69.9% at 2.3 bpp compared to 69.3% at 4.0 bpp), while also outperforming
the full-precision model by 0.3%.

7



Table 3: Performance of different quantization methods on ResNet-18 and ResNet-50 models trained
on ImageNet. * denotes results with Zero Precision Allocation.

ResNet-18 ResNet-50

Method Average Compression Test Average Compression Test
Bpp ↓ Ratio ↑ Accuracy (%) Bpp ↓ Ratio ↑ Accuracy (%)

FP 32.0 1.0 69.6 32.0 1.0 76.1

SLB 2.0/4 16.0 67.5

LQ-Nets 3.0/3 10.7 68.2 3.0/3 10.7 74.2
SMOL* 0.8/4 40.0 74.6
SMOL* 2.3/4 7.6 69.9 2.2/4 14.5 74.9

LQ-Nets 4.0/4 8.0 69.3 4.0/4 8.0 75.1
DSQ 4.0/4 8.0 69.6
BSQ 3.3/4 9.7 75.2
BSQ 3.7/4 8.6 75.3
SMOL* 4.1/4 7.0 77.1
SMOL 4.5/4 7.1 70.6
SMOL 4.2/4 7.6 70.4 5.3/4 5.9 76.9

On ResNet-50, SMOL outperforms LQ-Nets at 2.2 lower bpp, with an average number of bits of
0.8 – lower than a binary network. With 4.1 bpp, our method provides a 1.0% improvement over
the full-precision baseline, suggesting that the noise injection adopted by our method has additional
regularizing effects that can further improve generalization. Performance by average precision plots
for BSQ, SMOL, and LQ are given in Figure 4.

4.3 Image Generation with DCGAN

We train a DCGAN [39] model on the CIFAR-10 dataset to perform unconditional image generation
at a resolution of 32 × 32. The generator is implemented as four transposed convolutional layers
with batch norm and ReLU activations, while the discriminator consists of four strided convolutional
layers with batch norm and LeakyReLU activations. Models are trained with the binary cross-entropy
loss using Adam with a learning rate = 2 · 10−4 and (β1, β2) = (0.5, 0.999). We only quantize the
weights of the generator since it is the network used for deployment.

For BSQ, we first train a full-precision DCGAN for 30 epochs, quantize its weights to 8-bits, and
conduct 100 epochs of precision learning with a pruning interval of 10 epochs and λ = 2 · 10−3. The
models are then fine-tuned for 30 epochs, with a 10× decayed learning rate. Similarly, for SMOL we
train for a total of 160 epochs: 130 for precision training followed by 30 epochs for fine-tuning.

We randomly generate 10,000 samples for all methods, each assessed with Inception Score(IS) [42]
and Fréchet Inception Distance (FID) [15]. As shown in Table 4, our method consistently outperforms
BSQ, with higher generation quality at lower bpp, demonstrating generalization capability to the
challenging task of quantizing GANs.

We drastically improve BSQ’s FID from 37.1 at 3.9 bpp to 29.9 at only 3.5 bpp. For BSQ at 2.8 bpp,
SMOL* achieves 7.2 better FID with only 1.0 bpp. Even when evaluated at an extremely low bpp of
0.2, our method still generates images with good quality.

4.4 Heterogeneous Precisions for Quantized Activations

In order to extend SMOL to train precisions for hidden activations, we introduce new trainable
parameters to estimate the perturbation limit of activation outputs instead of weights. For an activation
tensor u, we instantiate a new variable s of the same shape which will be be trained jointly with the
network’s original parameters.

8



Table 4: Performance of BSQ and SMOL on image
generation on CIFAR-10 with DCGANs.

DCGAN

Method Avg. Inception FID ↓Bpp ↓ Score ↑
FP (30 epochs) 32.0 4.70 38.6
FP (160 epochs) 32.0 5.67 25.8

BSQ 2.8 4.85 38.3
SMOL* 0.2 4.75 35.6
SMOL* 0.5 5.03 34.1
SMOL* 1.0 5.01 31.1
SMOL 1.7 5.02 34.1

BSQ 3.9 4.95 37.1
SMOL* 3.5 5.29 29.9

Table 5: Performance of PACT and
SMOL when quantizing activations of
a ResNet-20 trained on CIFAR-10.

ResNet-20

Method Avg. Test
Bpa ↓ Acc. (%)

FP 32.0 91.6

PACT 2.0 89.2
SMOL-A 1.8 90.3

PACT 3.0 91.4
SMOL-A 2.9 91.8
SMOL-A 2.5 91.4

PACT 5.0 91.6

Similarly to the weight quantization case described in Section 3, at each training iteration t we sample
a tensor ε(t) with the same shape as u, where each component is drawn uniformly from [−1,+1],
and generate perturbed activations u+ M

2 · σ(s)� ε(t), which are used in place of u throughout the
next layers of the network. The scalar M denotes the range of activation function used to compute u,
i.e., M = 1 for sigmoid and M = 2 for tanh activations, and is used to match the magnitudes of the
activations and its perturbations. Since ReLU activations are unbounded, we use PACT [3] which
clips values to [0, α] where α is a new trainable parameter – this yields M = α. Once s has been
trained, we map its components to integer precisions which are used to quantize the activations u.

Table 5 shows the performance of a ResNet-20 trained on CIFAR-10 whose activations are quantized
by PACT and SMOL (referred as SMOL-A): our method provides off-the-shelf improvements over
PACT, offering higher accuracy at lower average bits per activation (bpa). All networks are trained
for 200 epochs, following the training settings from Section 4.1.

4.5 Computational Efficiency

A key question is whether per-parameter precisions can result in inference energy cost reductions. The
power required to multiply a 2-bit and 3-bit weight with a 4-bit activation is 2.41× and 3.83× higher
than what is required for a 1-bit weight; and the latency is 1.91× and 2.10× higher, respectively.
These numbers are estimated using ripple-carry adder based multiplier designs (which are suitable
for low-precision operations) for the corresponding precision settings [2]. For the accumulation
operations, we assume that the power and latency values are the same for different precision settings.

We take as an example the last convolutional layer of ResNet-20, for which BSQ assigns 2 bits for all
parameters while our method assigns 1, 2, and 3 bits to 74%, 24.5%, and 1.5% of the parameters,
respectively. In this case, the layer with precisions assigned by SMOL requires only 57.5% of
computation power while improving latency by 36% compared to BSQ, which amounts to an energy
cost reduction (power x latency) of 62.7%. Note that in real hardware designs, additional control
overheads, e.g., around 25% [34], are required to perform fine-grained mixed-precision operations.
Although estimates, these suggest that a fine-grained precision allocation scheme can result in
significant energy savings on hardware designed to support the corresponding arithmetic operations.

5 Discussion

With advances in hardware design and significant overparameterization of recent deep networks,
learning compact model representations that can be leveraged by specialized hardware has become a
key problem – one that is not restricted to the machine learning and systems communities.

Our work goes a step further in terms of network quantization by proposing SMOL, a modular
and principled method that is able to learn heterogeneous precisions at the finest granularity, where
different weights of the same model can be represented in distinct precisions regardless of how the
weights are connected in the network’s topology.

9



BSQ-generated DCGAN with 3.9 bpp SMOL-generated DCGAN with 3.9 bpp

SMOL-generated DCGAN with 1.2 bpp SMOL-generated DCGAN with 0.2 bpp

Figure 5: Image generations with a DCGAN trained on CIFAR-10, quantized with BSQ and SMOL.

Moreover, SMOL operates by introducing auxiliary variables to the target model, thus being agnostic
to the network’s topology, the choice of optimizer, or the underlying training setting, and hence it can
be easily combined with other algorithms such as neural architecture search.

Our procedure to allocate precisions lies in the optimization of a trade-off between the model’s
performance and its cost – a cost function that can be chosen according to the underlying application
or the user’s concern, e.g., computational or environmental cost.

Finally, our method offers an unification of pruning, binarization, and quantization, while at the same
time achieving state-of-the-art results in image classification and image generation with quantized
models. Our results show that adopting heterogeneous precisions yields highly compact models that
not only perform well, but can also result in significant computational advantages when deployed on
specialized hardware.

Acknowledgments and Disclosure of Funding

This work was supported in part by the University of Chicago CERES Center. The authors have no
competing interests.

10



References
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients

through stochastic neurons for conditional computation. arXiv:1308.3432, 2013.
[2] S.D. Brown and Z.G. Vranesic. Fundamentals of Digital Logic with VHDL Design. McGraw-

Hill series in electrical and computer engineering. McGraw-Hill, 2009.
[3] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi

Srinivasan, and Kailash Gopalakrishnan. PACT: Parameterized clipping activation for quantized
neural networks. arXiv:1805.06085, 2018.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. arXiv:1810.04805, 2018.

[5] Zhen Dong, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. HAWQ: Hessian
AWare quantization of neural networks with mixed-precision. In ICCV, 2019.

[6] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and
Dharmendra S. Modha. Learned step size quantization. In ICLR, 2020.

[7] Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Rémi Gribonval, Hervé Jégou,
and Armand Joulin. Training with quantization noise for extreme model compression. In ICLR,
2021.

[8] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In ICLR, 2019.

[9] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In CVPR, 2014.

[10] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei
Yu, and Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural
networks. In ICCV, 2019.

[11] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections
for efficient neural networks. In NeurIPS, 2015.

[12] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. In ICLR, 2016.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In ICCV,
2017.

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS,
2017.

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural
networks for mobile vision applications. arXiv:1704.04861, 2017.

[17] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q. Weinberger. CondenseNet:
An efficient DenseNet using learned group convolutions. In CVPR, 2018.

[18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In NeurIPS, 2016.

[19] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-
tized neural networks: Training neural networks with low precision weights and activations. J.
Mach. Learn. Res., 18:187:1–187:30, 2017.

[20] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and
Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB
model size. arXiv:1602.07360, 2016.

[21] Zhaoming Jiang, Zhuoran Song, Xiaoyao Liang, and Naifeng Jing. PRArch: Pattern-based
reconfigurable architecture for deep neural network acceleration. In HPCC, 2020.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

11



[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep
convolutional neural networks. In NeurIPS, 2012.

[24] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham M.
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
ICML, 2020.

[25] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient ConvNets. In ICLR, 2017.

[26] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network.
In NeurIPS, 2017.

[27] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan L. Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
ECCV, 2018.

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.
In ICLR, 2019.

[29] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In ICCV, 2017.

[30] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In
NeurIPS, 2017.

[31] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l_0 regularization. In ICLR, 2018.

[32] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimiza-
tion. In NeurIPS, 2018.

[33] Daisuke Miyashita, Edward H. Lee, and Boris Murmann. Convolutional neural networks using
logarithmic data representation. arXiv:1603.01025, 2016.

[34] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. Energy-efficient neural network accelerator
based on outlier-aware low-precision computation. In ISCA, 2018.

[35] Jorn W. T. Peters and Max Welling. Probabilistic binary neural networks. arXiv:1809.03368,
2018.

[36] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. In ICML, 2018.

[37] Ameya Prabhu, Girish Varma, and Anoop M. Namboodiri. Deep expander networks: Efficient
deep networks from graph theory. In ECCV, 2018.

[38] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and
Jingkuan Song. Forward and backward information retention for accurate binary neural networks.
In CVPR, 2020.

[39] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. In ICLR, 2016.

[40] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

[41] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Ima-
genet classification using binary convolutional neural networks. In ECCV, 2016.

[42] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In NeurIPS, 2016.

[43] Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsifi-
cation. In NeurIPS, 2020.

[44] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

[45] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zheng,
Rewon Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi,
Yuxiong He, Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. Using DeepSpeed
and Megatron to train Megatron-Turing NLG 530B, a large-scale generative language model.
arXiv:2201.11990, 2022.

12



[46] Zhuoran Song, Bangqi Fu, Feiyang Wu, Zhaoming Jiang, Li Jiang, Naifeng Jing, and Xiaoyao
Liang. DRQ: Dynamic region-based quantization for deep neural network acceleration. In
ISCA, 2020.

[47] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-aware automated
quantization with mixed precision. In CVPR, 2019.

[48] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer.
Mixed precision quantization of ConvNets via differentiable neural architecture search.
arXiv:1812.00090, 2018.

[49] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: Stochastic neural architecture
search. In ICLR, 2019.

[50] Huanrui Yang, Lin Duan, Yiran Chen, and Hai Li. BSQ: Exploring bit-level sparsity for
mixed-precision neural network quantization. arXiv:2102.10462, 2021.

[51] Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao Xu, Dacheng Tao, and Chang Xu.
Searching for low-bit weights in quantized neural networks. In NeurIPS, 2020.

[52] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.
[53] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. LQ-Nets: Learned quantiza-

tion for highly accurate and compact deep neural networks. In ECCV, 2018.
[54] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An extremely efficient

convolutional neural network for mobile devices. In CVPR, 2018.
[55] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. DoReFa-

Net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv:1606.06160, 2016.

[56] Bohan Zhuang, Lingqiao Liu, Mingkui Tan, Chunhua Shen, and Ian D. Reid. Training quantized
neural networks with a full-precision auxiliary module. In CVPR, 2020.

[57] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,
2017.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We will release
full source code upon paper acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Our experiments involve training
standard deep neural network models on modern GPUs; we include details on training
epochs used in all experiments.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


	Introduction
	Related Work
	Method
	Allocating Precisions by Optimizing Noise Magnitudes
	Zero Precision Allocation

	Results
	Image Classification on CIFAR-10
	ImageNet
	Image Generation with DCGAN
	Heterogeneous Precisions for Quantized Activations
	Computational Efficiency

	Discussion
	Framework Derivation
	Preliminaries
	Stochastic Approximation

	Bit Counting: Implicit vs Explicit Sign Bits
	Experimental Details
	Additional Experimental Questions
	What Precision does SMOL Allocate to Each Layer?
	More Precision Training or More Fine-tuning?
	Does SMOL Learn Structured Precision Maps?
	Can SMOL Quantize Transformer Models?


