
Appendix

We present additional experiments and discussions in the following sections. Appendix A provides
the derivation of our precision-training framework, including steps and approximations taken to arrive
at our proposed regularized loss. Appendix B presents a discussion on how to accurately compare
methods that use different bit values, which is crucial when comparing our method against BSQ
[50] as it adopts unsigned bits and a mutual notion of precision must be established. Appendix C
has additional details on our main experiments, including how λ was chosen and how activations
were quantized. Finally, Appendix D offers additional experimental results with the goal of studying
key questions regarding our method, including whether it is able to assign precisions in a layer-wise
fashion instead of per-parameter.

A Framework Derivation

A.1 Preliminaries

We start by defining a function family F parameterized by Θ ⊆ Rd: for any θ ∈ Θ, we have a
function fθ ∈ F , fθ : Rdin → Rdout that is induced by θ. In our practical setting, the variables θ
denote a configuration for the parameters of neural network while fθ represents the function that the
network implements under such parameter values.

For the sake of convenience, we directly define a loss functional L : Θ → R that measures the
(average) instant loss of a function fθ ∈ F induced by some θ ∈ Θ. For example, L can be explicitly
given by L(θ) = 1

N

∑N
i=1 `(fθ(xi), yi), where ((xi, yi))

N
i=1 is a fixed dataset and ` is an instant loss

(i.e., squared loss or cross-entropy).

Now, consider the problem of finding a parameter setting θ ∈ Θ where each component θi is
represented by exactly pi many (signed) bits given a bit-value map (v1, v2, . . .) that assigns a scalar
vj ∈ R to each position j ∈ N in a bit string. In other words, we have

θi =

pi∑
j=1

bi,j · vj ,

where bi,j ∈ {±1} is the j’th bit used to represent θi and (vj)
P
j=1 is the bit-value map. W.l.o.g. we will

assume that the bit-value map is (countably) infinite and that Vd ⊆ Θ, where V = {
∑∞
j=1 bj ·vj | bj ∈

{±1}} is the set of all possible values that each parameter can assume.

We can then formalize the problem of finding a set of bit precisions p ∈ Nd and bit strings b ∈
{±1}d×∞ such that the total precision

∑d
i=1 pi is minimized and the parameter setting θ ∈ Θ

induced by b achieves ‘small loss’:
Definition A.1. (Mixed Precision Problem)

min
p∈Nd, b∈{±1}d×∞

d∑
i=1

pi s.t. L(V (b, p)) ≤ L∗ + δ , V (bi, pi) =

pi∑
j=1

bi,j · vj (3)

where L∗ = minθ∈Vd L(θ) is the smallest achievable loss by F over Vd and δ ∈ R+ is a scalar
that captures tolerance in terms of suboptimality. Here, V is the function that maps bit strings
b ∈ {±1}d×∞ and precision values p ∈ Nd to parameter values θ ∈ Vd element-wise:

V (bi, pi) =

pi∑
j=1

bi,j · vj .

The above problem poses a few obstacles: first, it involves a search over multiple binary values for
each of the d parameters of the network; second, the derivative w.r.t. each integer precision pi is
undefined, making it ill-suited for gradient-based methods.

Alternatively, we can directly optimize θ ∈ Vd under the constraint that its finite-precision represen-
tation is used to evaluate the loss L:

15

Definition A.2. (Mixed Quantization Problem)

min
p∈Nd, θ∈Vd

d∑
i=1

pi s.t. L(Q(θ, p)) ≤ L∗ + δ (4)

where Q maps θ ∈ V to a finite-precision representation of itself with exactly p many bits. To define
Q precisely we will first introduce a notion of inverse for V (a ‘notion’ since V is not generally
bijective).

For any θi ∈ V, we let V −1(θi) denote a setting (bi, pi), with pi ∈ N and bi ∈ {±1}∞ such that
V (bi, pi) = θi and, moreover, for any (b′i, p

′
i) such that V (b′i, p

′
i) = θi, it follows that p′i ≥ pi.

That is, V −1 maps each element θi ∈ V to a precision-bitstring tuple that perfectly represents θi
using the least number of bits. We also define V −1p (θi) = pi and V −1b (θi) = bi where, as before,
V −1(θi) = (bi, pi).

Then, we can define Q by Q(θi, pi) =
∑pi
j=1 V

−1
b (θi)j · vj , i.e., it is the value induced by the

shortest bit string that represents θ, when considering only its first pi bits. Note that this yields
Q(θi, pi) = V (V −1b (θi), pi), which will be a key property in the proofs below.

While it might be tempting to see Q as a quantization mapping, it not always acts as such. For
example, consider the value map given by vj = 21−j , where θi = 1 can be represented by p(1) = 1,
b
(1)
i = (1, 1, 1, 1, . . .), by p(2) =∞, b(2)i = (1,−1, 1, 1, . . .), and so on. In this case, we could let
V −1(1) = (b(1), p(1)), but not V −1(1) = (b(2), p(2)). For the former, we would have Q(1, 2) = 3

2 ,
which is not a quantization – in the common sense – of θi = 1 under the considered value map.

With this definition of Q we can show that the optimization problems in Equations (3) and (4) are
equivalent (under V and V −1).
Lemma A.3. For any setting (b, p) that satisfies L(V (b, p)) ≤ L∗ + δ in Equation (3), we have that
(θ = V (b, p), p) satisfies L(Q(θ, p)) ≤ L∗ + δ in Equation (4).

Proof. By definition, we have:

Q(θ, p) = Q(V (b, p), p)

= V
(
V −1b (V (b, p)), p

)
= V (b, p)

= θ

(5)

Therefore, the parameter setting induced by V (p, b) in Equation (3) will be the same as the one
induced by Q(θ, p) in Equation (4), and hence the losses will be the same and satisfiability follows.

Lemma A.4. For any setting (θ, p) that is a minimizer of the problem in Equation (4), we have that
(b = V −1b (θ), p) satisfies L(V (b, p)) ≤ L∗ + δ in Equation (3).

Proof. Since (θ, p) minimizes
∑d
i=1 pi by assumption, we have that no θi can be represented with

less than pi many bits and hence p = V −1b (θ). Therefore

V (b, p) = V (V −1b (θ), p)

= V (V −1b (θ), V −1p (θ))

= V (V −1(θ))

= θ

(6)

Therefore, the parameter setting induced by Q(θ, p) = θ in Equation (4) will be the same as the
one induced by V (b, p) in Equation (3), and hence the losses will be the same and satisfiability
follows.

16

With the two Lemmas we can prove that the two problems are indeed equivalent:
Corollary A.5. The optimization problems in Equations (3) and (4) are equivalent under V and
V −1. That is, for any (b, p) that minimizes (3), we have that (θ = V (b, p), p) minimizes (4), and for
every (θ, p) that minimizes (4) we have that (b = V −1b (θ), p) minimizes (3). Moreover, the induced
function fθ will be the same in all cases.

Proof.

• (4)→ (3): assume for the sake of contradiction that (b = V −1b (θ), p) is suboptimal in (3),
then there exists a satisfiable (b′, p′) with ‖p′‖ < ‖p‖, but from Lemma A.3 it follows that
(θ = V (b′, p′), p′) is satisfiable in (4), which contradicts the optimality of (θ, p).

• (3)→ (4): assume for the sake of contradiction that (θ = V (b, p), p) is suboptimal in (4),
then there exists a satisfiable (θ′, p′) with ‖p′‖ < ‖p‖, but from Lemma A.4 it follows that
(b = V −1b (θ′, p′), p′) is satisfiable in (3), which contradicts the optimality of (b, p).

A.2 Stochastic Approximation

We now present a sequence of steps, involving approximations, that yield our final method.

1. We can first write
Q(θ, p) = θ − (θ −Q(θ, p)) = θ +R(θ, p)

which allows us to show that

R(θi, pi) =

V −1
p (θi)∑
j=p+1

V −1b (θi)j · vj

+

 p+1∑
j=V −1

p (θi)

V −1b (θi)j · vj

by relying on the definition of Q and V −1 alone.

2. Next, we consider the following assumption: if (θi, pi) is satisfiable, then (θi, p
′
i) is satis-

fiable for any p′i > pi (i.e. assigning more bits to a parameter preserves its satisfiability).
This assumption can be more simply framed as

L(Q(θ, p)) < L∗ + δ =⇒ L(Q(θ, p′)) < L∗ + δ, ∀i p′i > pi ,

and is the core assumption for our method.
3. Using the definition of R and w.l.o.g. denoting Q(θ, p) simply by θ′, we get from the above

equation that

L(θ′) < L∗ + δ =⇒ L(θ′ +R(θ′, p′)) < L∗ + δ, ∀i p′i > V −1p (θ′i)

i.e., using the trinary system, this means that if a bitstring (1, 1, 0, 0, 0, . . .) is satisfiable,
then any bitstring (1, 1,±1,±1,±1, . . .) will also be satisfiable. Now, we can frame the
following optimization problem which has infinitely many constraints:

min
p∈Nd, θ∈Vd

d∑
i=1

pi s.t. L(θ +R(θ, p′)) ≤ L∗ + δ, ∀i p′i > pi = V −1p (θi) (7)

4. Note that R(θi, p
′
i) includes V −1b (θi) which admits any configuration for all bits after

V −1b (θi)-pth one due to the fact that Q operates via performs truncation. We further assume
that {R(θi, p

′
i) | p′i > V −1p (θi)} is dense in some interval I(θi, pi) = [l, u] ⊂ V.

We then frame a stochastic approximation for the problem above, which is designed by
sampling from the infinitely many constraints that were introduced:

min
p∈Nd, θ∈Vd

d∑
i=1

pi s.t.
1

K

K∑
k=1

L(θ+ ε(k)) ≤ L∗+ δ, ∀(i, k), ε
(k)
i ∼ P(I(θi, pi))

(8)

17

5. Next, we pose the constraints using Lagrange multipliers to yield a regularized objective:

min
p∈Nd, θ∈Vd

1

K

K∑
k=1

L(θ + ε(k)) + λ‖p‖, ∀(i, k), ε
(k)
i ∼ P(I(θi, pi)) (9)

6. Note that the derivation so far is agnostic to the underlying value map. We now assume
the value map is given by vj = 21−j , where we get P(I(θi, pi)) = U(±21−pi) under a bit
distribution of U(±1) for all bits after the V −1p (θi)-th one:

min
p∈Nd, θ∈Vd

1

K

K∑
k=1

L(θ + ε(k)) + λ‖p‖, ∀k, ε(k)i ∼ Ud(±21−pi) (10)

7. To allow for gradients to flow through the sampling procedure, we apply the reparameteriza-
tion trick and a continuous relaxation on p:

min
p∈Rd

+, θ∈Vd

1

K

K∑
k=1

L(θ + 21−p � ε(k)) + λ‖p‖, ∀k, ε(k) ∼ Ud(±1) (11)

8. Finally, we reparameterize both p and θ to yield variables that can be optimized over the
reals – although not necessary, this results in a procedure that does not require variables to
be projected to a domain after each update.
We define s = σ−1(21−p), θ = τ(w), and frame the problem as optimization over (s, w)
instead, with the advantage that, unlike (p, θ), they both belong to Rd:

min
s,w∈Rd

1

K

K∑
k=1

L(τ(w)+σ(s)�ε(k))+λ‖ log2(1+e−s)‖, ∀k, ε(k) ∼ Ud(±1) (12)

where ideally we have τ : R→ V be such that τ(R) = V.
This concludes the derivation of our regularized loss. Note that instead of adopting the
reparameterization θ = τ(w), we can directly optimize θ while guaranteeing that θ ∈ V:
this can be easily achieved by projecting the parameters θ to an interval, for example to
[−1,+1] when using signed bit representations.

B Bit Counting: Implicit vs Explicit Sign Bits

The process of quantizing data is heavily dictated by whether bits are chosen to be signed (taking
values {+1,−1}) or unsigned (values {0, 1}), and comparing methods that use different settings
might require adopting notions of ‘precision’ that diverge from the ones used in their original papers.

Most methods on quantizing neural networks [53, 51, 10] – ours included – adopt signed bits, which
is often done implicitly by splitting the [−1,+1] interval uniformly in 2p bins to extract the values
that quantized data can assume. In this case, assigning a value of 21−i to each i-th bit results in a
bitstring (b1, b2, . . . , bp) being mapped to

∑p
i=1 bi · 21−i, a variable that can assume 2p different

values uniformly distributed over an interval centered at the origin i.e., [−M,+M] for positive M .

On the other hand, adopting unsigned bits results in the possible values for
∑p
i=1 bi · 21−i to be

uniformly distributed over a [0,M ′] interval instead (for positive M ′), hence bitstrings can only be
mapped to non-negative values. An additional ‘sign bit’ can be adopted to allow the representation of
negative numbers: in particular, points are encoded to unsigned bitstrings of the form (bs, b1, . . . , bp′),
which are then mapped to s(bs) ·

∑p′

i=1 bi · 21−i where s(bs) = +1 if bs = 1 and s(bs) = −1 if
bs = 0: note that such mapping allows for a total of 2p

′+1 different outputs. In this case the term
‘precision’ p can be used to either denote p′ + 1 (the total number of bits used to encode each point)
or p′ (number of bits except for the ‘sign bit’ bs). However, when comparing a method that relies on
such representation to one that adopts signed bits instead, we must count the additional ‘sign bit’ i.e.,
p = p′ + 1, as in this case both methods can represent exactly 2p values given a precision of p bits.

When considering results reported by BSQ [50], we account for an additional ‘sign bit’ that is
implicitly used when quantizing full-precision weights with bitstrings. More specifically, once a

18

model has been fine-tuned, BSQ converts its full-precision weights Ws ∈ Rd to binary tensors
W

(0)
p , . . . ,W

(n−1)
p ,W

(0)
n , . . . ,W

(n−1)
n , each ∈ {0, 1}d, where (W

(b)
p)n−1b=0 encodes the positive

components of Ws while (W
(b)
n)n−1b=0 encodes the absolute value of its negative components.

These binary tensors are then mapped to quantized weights Wfinal = 1
2n−1

∑n−1
b=0 (W

(b)
p −

W
(b)
n)2n−b−1, whose components can take values 1

2n−1{0, 1, . . . , 2
n − 1} by setting W (b)

n = 0

and enumerating all configurations for (W
(b)
p)n−1b=0 , while setting W (b)

p = 0 and considering all con-
figurations for (W

(b)
n)n−1b=0 yields the values −1

2n−1{0, 1, . . . , 2
n − 1}: in total, we have that elements

of Wfinal can assume 2n+1 − 1 distinct values (2n − 1 positive, 2n − 1 negative, and 0). An implicit
‘sign bit’ is also used in the forward computation of quantized models, which maps weights W to

1
2n−1 · sign(W)� d|W | · (2n − 1)c: the implicit representation of n bits does not encode the sign of
the weights, which is recovered after quantizing its absolute value over 2n bins.

To summarize, BSQ uses unsigned bit representations to encode weights but without an explicit ’sign
bit‘: the weight signs are either bypassed and hence not encoded (as in the forward pass), or are
implicitly encoded by allocating two bitstrings for each weight (as when converting full-precision
weights to bitstrings)1 – where which one is used is dictated the the weight’s sign.

To account for the mismatch in how many values can be represented with p many bits by BSQ
compared to our method, we account for one more bit when reporting BSQ results, which designates
the implicit ‘sign bit’ in addition to the unsigned n-bit representations.

C Experimental Details

Values for λ: When training ResNet-20 networks on CIFAR-10, we used λ ∈ {10−6, 7 · 10−7, 5 ·
10−7} when running SMOL, where larger values for λ result in less bits per parameter: λ = 10−6

resulted in a network with 2.1 bpp while λ = 5·10−7 yielded a model with 2.8 bpp. For MobileNetV2
we used λ ∈ {10−7, 2 · 10−7}, while for ShuffleNet we adopted λ ∈ {5 · 10−8, 7 · 10−10}
For our ImageNet experiments, we adopted {10−6, 10−8} and {10−7, 10−8} as values for λ when
training ResNet-18 and ResNet-50 networks, respectively. Different values for λ were required
(compared to the ones we used for CIFAR-10) due to the ImageNet ResNets having considerably
more parameters than the ResNet-20 model we adopted for CIFAR-10: note that our regularizer is a
sum over all precisions instead of, for example, an average.

Finally, for image generation we used λ ∈ {2 · 10−5, 10−5, 5 · 10−6, 2 · 10−6, 10−6}, where the
most compact model (0.2 bpp) was achieved with λ = 2 · 10−5 along with zero precision allocation.
In most cases we saw a decrease of between 1 and 2 bpp when enabling zero precision allocation:
training a DCGAN with λ = 10−5 results in 0.5 bpp with zero precision allocation and 1.7 without it.

Quantized activations for ImageNet Experiments: We follow BSQ [50] and replace all ReLU
modules by ReLU6 throughout the network, resulting in outputs constrained to the [0, 6] interval.
Activations are not quantized prior to fine-tuning i.e., precision training with SMOL uses full-precision
activations, which are only quantized once precisions have been allocated and fine-tuning has started.
All our experiments that quantize activations consider 4-bit precisions i.e., the activation tensors are
quantized using 24 = 16 different values.

Also following BSQ, we use straight-through estimators to allow for gradient flow through the
activation quantization procedure. The quantization values are uniform over half of the activation
range – typically [0, 3], which results in the full-precision activations being quantized to one of the 16
values in the set {0, 15 ,

2
5 , . . . ,

14
5 ,

15
5 }.

1These refer to bit_STE and finetune_to_bit in the official github repository: https://github.com/
yanghr/BSQ/tree/9f09b6284d264ce07445e42ddd18764c7b3d0405

19

https://github.com/yanghr/BSQ/tree/9f09b6284d264ce07445e42ddd18764c7b3d0405
https://github.com/yanghr/BSQ/tree/9f09b6284d264ce07445e42ddd18764c7b3d0405

Figure 6: Layer-wise precisions allocated by SMOL-L on ResNet-20 models trained on CIFAR-10.
The x-axis denotes the layer indices: leftmost points denote earlier layers while rightmost denote
layers in the later stages of ResNet, which are closer to the final fully-connected layer.

D Additional Experimental Questions

D.1 What Precision does SMOL Allocate to Each Layer?

In Section 4.1 we present results for SMOL when training layer-wise precisions on a ResNet-20
trained on CIFAR-10 (SMOL-L in Table 1), where higher performance under lower bpp is achieved
compared to BSQ.

Figure 6 shows the precisions allocated to each layer of the ResNet-20 under three different values
for λ: in all cases, later convolutional layers are assigned low precisions compared to earlier stages of
the network. The first convolution, along with the fully-connected layer at the end of the network, are
assigned significantly higher precision than other layers.

D.2 More Precision Training or More Fine-tuning?

In our main experiments we allocate roughly half of the training budget to precision training and the
other half to fine-tuning i.e., further optimization of the weight parameters while applying quantization
and adopting straight-through estimators. Here we show how the performance and size (measured
in average number of bits per parameter) of the final model behaves under different ratios for the
number of epochs allocated to precision training over the total training budget.

We use the settings described in Section 4.1, training models with λ = 7 · 10−7 but changing what
how many of the total 650 epochs are used for precision training – the remaining ones are always
allocated to fine-tuning the model.

Results are shown in Figure 7: there is significant change in the model’s bpp when the fraction of
epochs allocated to precision training is lower than 250

650 , indicating that SMOL requires between 200
and 250 epochs to fully optimize the auxiliary variables s. For ratios larger than 250

650 our method yields
networks with similar bits-per-parameter (around 2.5 bpp), but the test accuracy starts to decrease
as the ratio increases due less epochs being used to fine-tune the model. The best performance is
achieved by allocating 350 epochs for precision training, which results in the remaining 300 epochs
being assigned for fine-tuning.

20

Figure 7: Performance and average precision of ResNet-20 trained on CIFAR-10 with SMOL when
allocating different number of epochs to precision training versus fine-tuning. Curve shows increases
of 50 epochs over a total of 650 epochs.

Table 6: Comparison between a ResNet-20 trained on CIFAR-10 with SMOL and its performance
when re-trained, either when the per-weight precision assignments are maintained or randomly
permuted (shuffled).

ResNet-20

Method Average Compression Test
Bpp ↓ Ratio (×) ↑ Accuracy (%)

Original (SMOL) 2.5 12.8 92.8
Re-trained with same precisions 2.5 12.8 91.5
Re-trained with shuffled precisions 2.5 12.8 89.3

D.3 Does SMOL Learn Structured Precision Maps?

To evaluate whether the per-parameter precision assignments learned by SMOL have an underlying
structure or not, we set up an additional experiment which aims to re-train and evaluate a network
after destroying any possible structure in its precision map. In particular, we start from a ResNet-20
model that has been fully trained and fine-tuned by SMOL, and proceed to re-train it under two
different settings.

For the first, we re-initialize the weight parameters (using a different random seed) but fully preserve
the precision assignments generated by SMOL i.e., each i-th weight wi with precision pi is randomly
re-initialized (wi ∼ Dinit), but pi is kept the same. As for the second setting, we also apply a random
permutation on the precision tensor of each layer i.e., weights wi and wj of the same layer have their
precisions pi and pj swapped – with the goal of destroying any possible structure that the tensor p
might have.

We then re-train the two networks using the same training settings adopted in Section 4.1, but skipping
precision training and hence allocating a budget of 300 epochs to weight training under quantization
and straight-through estimators, akin to fine-tuning.

Table 6 and Figure 8 present results: randomly permuting (shuffling) the precisions yields in signifi-
cantly lower performance (89.3% compared to 91.5%), suggesting that the precision assignments
generated by SMOL do have an underlying structure, which can be some form of per-layer organiza-
tion i.e., allocating high or low precision to all elements in the same convolutional filter, or cross-layer
structure i.e., feature maps (layer outputs) have low or high precision connections to both the previous
and the next layer. We leave further the characterization of such structure to future work.

21

Figure 8: Generalization performance when re-training networks, with and without randomly per-
muted (shuffled) precisions. The model whose precisions have been shuffled has visibly lower
performance across all stages of training and achieves significantly lower final performance.

D.4 Can SMOL Quantize Transformer Models?

Table 7: Performance of
SMOL when quantizing a
Transformer on IWSLT’14.

Transformer

Method Avg. BLEU
Bpp ↓ Score ↑

FP 32.0 34.9
SMOL 3.9 34.7
SMOL 5.8 34.9

Since our results in Section 4 focus on CNN-like networks like
ResNets and MobileNetV2, an immediate question is whether SMOL
is able to efficiently quantize architectures of different families, for
example Transformers which do not use convolutions and whose main
component is the attention mechanism.

To answer this question, we run preliminary experiments where we
train a standard encoder-decoder Transformer with 6 attention blocks
on the neural machine translation IWSLT’14 German to English task,
where we quantize all weights except for the layer normalization
parameters. A total of 50 epochs were used for training: for SMOL,
the first 30 were used to train the precisions and the remaining 20 for
fine-tuning.

Results in Table 7 show that SMOL can match the performance of the full-precision model at 5.8
bpp, which amounts to a 5.5× compression ratio. At a lower bpp of 3.9 (8.2× ratio), the BLEU score
is lower by only 0.2. Note that we use the same training budget that is commonly employed when
training a full-precision model for this task, which is likely suboptimal for quantization. Therefore,
although promising, these results are preliminary and can likely be improved by simply training for
more epochs.

22

	Introduction
	Related Work
	Method
	Allocating Precisions by Optimizing Noise Magnitudes
	Zero Precision Allocation

	Results
	Image Classification on CIFAR-10
	ImageNet
	Image Generation with DCGAN
	Heterogeneous Precisions for Quantized Activations
	Computational Efficiency

	Discussion
	Framework Derivation
	Preliminaries
	Stochastic Approximation

	Bit Counting: Implicit vs Explicit Sign Bits
	Experimental Details
	Additional Experimental Questions
	What Precision does SMOL Allocate to Each Layer?
	More Precision Training or More Fine-tuning?
	Does SMOL Learn Structured Precision Maps?
	Can SMOL Quantize Transformer Models?

