Greedy and Random Quasi-Newton Methods with Faster Explicit Superlinear Convergence

Dachao Lin, Haishan Ye, Zhihua Zhang

Advances in Neural Information Processing Systems 34 (NeurIPS 2021)

In this paper, we follow Rodomanov and Nesterov’s work to study quasi-Newton methods. We focus on the common SR1 and BFGS quasi-Newton methods to establish better explicit (local) superlinear convergence rates. First, based on the greedy quasi-Newton update which greedily selects the direction to maximize a certain measure of progress, we improve the convergence rate to a condition-number-free superlinear convergence rate. Second, based on the random quasi-Newton update that selects the direction randomly from a spherically symmetric distribution, we show the same superlinear convergence rate established as above. Our analysis is closely related to the approximation of a given Hessian matrix, unconstrained quadratic objective, as well as the general strongly convex, smooth, and strongly self-concordant functions.