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Abstract

In this paper, we follow Rodomanov and Nesterov [19]’s work to study quasi-
Newton methods. We focus on the common SR1 and BFGS quasi-Newton methods
to establish better explicit (local) superlinear convergence rates. First, based on
the greedy quasi-Newton update which greedily selects the direction to maximize
a certain measure of progress, we improve the convergence rate to a condition-
number-free superlinear convergence rate. Second, based on the random quasi-
Newton update that selects the direction randomly from a spherically symmetric
distribution, we show the same superlinear convergence rate established as above.
Our analysis is closely related to the approximation of a given Hessian matrix,
unconstrained quadratic objective, as well as the general strongly convex, smooth
and strongly self-concordant functions.

1 Introduction

We study the superlinear convergence of famous quasi-Newton methods that replace the exact Hessian
applied in classical Newton methods with certain approximations. The approximation is updated in
iterations based on some special formulas from the previous variation. There exist various quasi-
Newton algorithms with different Hessian approximations. The three most popular versions are the
Davidon-Fletcher-Powell (DFP) method [7, 10], the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [2, 3, 9, 11, 21], and the Symmetric Rank 1 (SR1) method [1, 7], all of which belong to
the Broyden family [1] of quasi-Newton algorithms. The most attractive property of quasi-Newton
methods is their superlinear convergence, which can trace back to the 1970s [4, 8, 17]. However, the
superlinear convergence rates provided in prior work are asymptotic [5, 13, 15, 22, 24]. The results
only show that the ratio of successive residuals tends to zero as the running iterations approach to
infinity, while still lacking a specific superlinear convergence rate.

Recently, Rodomanov and Nesterov [19] gave the first explicit local superlinear convergence for their
proposed new quasi-Newton methods. They introduced greedy quasi-Newton updates by greedily
selecting from basis vectors to maximize a certain measure of progress, and established an explicit
non-asymptotic bound on the local superlinear convergence rate correspondingly. Their proofs are
mainly applicable to the DFP methods because they reduced all possible Broyden family to the
DFP update based on the monotonicity property (see Lemma 2.2). However, the SR1 and BFGS
updates are more popular and faster than the DFP update in practice, which also has been verified in
their experiments. In addition, Rodomanov and Nesterov [19] also discovered that the randomized
methods do not lose superlinear convergence but they did not provide theoretical guarantees.
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Greedy or Random Methods Strongly Self-concordant Objective k0

DFP, BFGS, SR1 [19]
(
1− 1

nκ

)k(k−1)/2 ( 1
2

)k (
1− 1

2κ

)k0
O (nκ ln(nκ))

BFGS, SR1 (Corollary 4.4)
(
1− 1

n

)k(k−1)/2 ( 1
2

)k (
1− 1

2κ

)k0
O (max{n, κ} ln(nκ))

Table 1: Comparison of the existing specific superlinear convergence rates of the random or greedy
quasi-Newton methods with our results in the view of λf (·) (see the definition in Eq. (17)), where n
is the dimension of parameters, κ is the condition number of the objective function, and k0, k are
the iteration numbers. Rodomanov and Nesterov [19]’s results are suitable for greedy quasi-Newton
methods using the Broyden family update, which includes DFP, BFGS, SR1 methods.

Along this line, there are other results of local superlinear convergence analysis. Rodomanov and
Nesterov [20] analyzed the well-known DFP and BFGS methods, using a standard Hessian update
direction through the previous variation. They demonstrated faster initial convergence rates, while
slower final rates compared to Rodomanov and Nesterov [19]’s results. Rodomanov and Nesterov
[18] improved Rodomanov and Nesterov [20]’s results by reducing the dependence of the condition
number κ to lnκ, though having similar worse long-history behavior. Jin and Mokhtari [14] provided
a non-asymptotic dimension-free superlinear convergence rate of the original Broyden family when
the initial Hessian approximation is also good enough.

In this work, we prove faster convergence rates for greedy and random quasi-Newton algorithms,
particularly on the SR1 and BFGS methods. We present our contribution as follows:

• First, in the setting of approximating an exact Hessian, we use two update methods: 1) greedy
update modified from Rodomanov and Nesterov [19]; 2) random update that randomly
selects the updating direction from any spherically symmetric distribution. We show that
both methods share a faster condition-number-free convergence. Particularly, we obtain
the superlinear convergence rate O

(
1− k

n

)
for SR1 update, and the linear convergence rate

O((1− 1
n )k) for BFGS update, where k is the current iteration, and n is the dimension of

parameters. Both findings improve the original convergence rate O((1− 1
nκ )k) [19].

• Second, we extend our analysis to a practical scheme. We show (local) superlinear conver-
gence under the SR1 update and BFGS update, when applied to unconstrained quadratic
objective or strongly self-concordant functions. We list our results in Table 1 with the same
formulation of [19]. Note that in general, the convergence goes through two periods. The
first period lasts for k0 iterations, and only has a linear convergence rate O((1− 1

2κ )k0). The
second period has a superlinear convergence rate O((1− 1

n )k(k−1)/2). Our revised bound
takes fewer first-period iterations k0 as well as a faster (condition-number-free) superlinear
convergence rate in the second period compared to [19].

Notation. We denote vectors by lowercase bold letters (e.g., u,x), and matrices by capital bold
letters (e.g., W = [wij ]). We use e1, . . . , en for the n-dimensional coordinate directions. Let
λ1(A) ≥ · · · ≥ λn(A) be the eigenvalues of a real symmetric matrix A ∈ Rn×n. Moreover,
‖ · ‖ denotes the `2-norm (standard Euclidean norm). For a given positive definite matrix A (i.e.,
A � 0), we induce the following pair of conjugate Euclidean norms: ‖x‖A ,

√
x>Ax, ‖x‖∗A ,√

x>A−1x. When A = ∇2f(x) � 0, we prefer to use notation ‖ · ‖x and ‖ · ‖∗x, provided that there
is no ambiguity with the reference function f . We recall the rate of convergence used in this paper.

Definition 1.1 (Linear/Superlinear convergence) Suppose a sequence {xn} converges to 0 with

lim
n→∞

|xn+1|
|xn|

= q ∈ [0, 1).

Now suppose another sequence {yn} converges to y∗ and satisfies that |yn − y∗| ≤ |xn|,∀n ≥ 0.
We say {yn} converges superlinearly if q = 0, linearly if q ∈ (0, 1).

Organization. In Section 2, we discuss quasi-Newton updating rules for approximating a positive
definite Hessian matrix using the SR1 update (Subsection 2.1) and the BFGS update (Subsection
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2.2). In Section 3, we analyze previous methods applied to the problem of minimizing a quadratic
function. In Section 4, we show that similar results also hold in a more general setting of minimizing
the strongly self-concordant function. We give some empirical results in Section 5. Finally, in Section
6, we present our conclusion.

2 Quasi-Newton updates

Before starting our theoretical results, we briefly review a class of quasi-Newton updating rules for
approximating a positive definite matrix A ∈ Rn×n. We follow the definition in [19], employing the
following family of updates which describes the Broyden family [16, Section 6.3] of quasi-Newton
updates, parameterized by a scalar τ ∈ R.

Definition 2.1 Let A � G (that is, G−A is positive semi-definite). For any u ∈ Rn, if Gu = Au,
define Broydτ (G,A,u) , G. Otherwise, we define

Broydτ (G,A,u) , τ

[
G− Auu>G + Guu>A

u>Au
+

(
u>Gu

u>Au
+ 1

)
Auu>A

u>Au

]
+ (1− τ)

[
G− (G−A)uu>(G−A)

u>(G−A)u

]
.

(1)

For several choices of τ , we can recover several well-known quasi-Newton methods.

For τ = 0, Eq. (1) corresponds to the well-known SR1 update:

SR1(G,A,u) , G− (G−A)uu>(G−A)

u>(G−A)u
. (2)

For τBFGS , u>Au
u>Gu

∈ [0, 1], we recover the famous BFGS update:

BFGS(G,A,u) , G− Guu>G

u>Gu
+

Auu>A

u>Au
. (3)

For τ = 1, it corresponds to the well-known DFP update:

DFP(G,A,u) , G− Auu>G + Guu>A

u>Au
+

(
u>Gu

u>Au
+ 1

)
Auu>A

u>Au
. (4)

Additionally, the Broyden family has matrix monotonicity below, showing the relationship among
these quasi-Newton methods.

Lemma 2.2 (Rodomanov and Nesterov [19] Lemmas 2.1 and 2.2) If A � G � ηA for some
η ≥ 1, then we have for any u ∈ Rn, and τ1, τ2 ∈ R with τ1 ≤ τ2 that

Broydτ1(G,A,u) � Broydτ2(G,A,u).

And for any τ ∈ [0, 1], we have A � Broydτ (G,A,u) � ηA.

Hence, if A � G � ηA for some η ≥ 1, it follows from Lemma 2.2 that

A � SR1(G,A,u) � BFGS(G,A,u) � DFP(G,A,u) � ηA.

Intuitively, the approximation produced by SR1 is better than that produced by BFGS. And both of
them are better than that produced by DFP. However, Rodomanov and Nesterov [19] deduced the
analysis by casting all updates described by Broyden family (τ ∈ [0, 1]) into the slowest DFP update
(τ = 1). Moreover, SR1 and BFGS methods also have faster numerical performance in practice.
Therefore, we consider there might have faster superlinear convergence rates of SR1 and BFGS
methods.

Now we consider the fundamental matrix approximation problem below to obtain the convergence
rate of the SR1 and BFGS updates.
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2.1 Superlinear convergence for SR1 update

We first describe the SR1 update for approximating a fixed positive definite matrix A ∈ Rn×n
and leave the proof in Appendix A. Let us now justify the efficiency of update Eq. (2) in ensuring
convergence G to A. For this, we introduce the following measure of progress:

τA(G) , tr(G−A). (5)

Previous work [19] uses a different measure as follows

σA(G) , 〈A−1,G〉 − n = tr
[
(G−A)A−1

]
, (6)

which might be improper for analyzing the SR1 update. Thus we employ a more concise measure
τA(·). However, we will reuse σA(·) in the proof of BFGS update in Subsection 2.2.

According to τA(G), one iteration update leads to

τA(G+)
(5)
= τA(G)− u>(G−A)2u

u>(G−A)u
, G+ = SR1(G,A,u).

Note that we always have G+ � A if G � A from Lemma 2.2. Moreover, the choice of the updating
direction u directly influences the decrease in the measure τA(·). In the following, we show two
efficient ways for selecting u introduced in Algorithm 1.

First, we use the greedy method introduced in [19], that greedily selects u from the basis vectors
to obtain the largest decrease of τA(G+) − τA(G): ūA(G) , arg maxu∈{e1,...,en}

u>(G−A)2u
u>(G−A)u

.
However, we may encounter numerical overflow due to divided by 0 if u>(G −A)u is nearly 0.
Noting that G � A, we have

√
(u>(G−A)2u) (u>u) ≥ u>(G −A)u ≥ 0, ∀u ∈ Rn from

Cauchy–Schwarz inequality. Thus we employ a safer adjustment:

(Greedy SR1) ūA(G) , arg max
u∈{e1,...,en}

u>(G−A)u

u>u
= arg max

u∈{e1,...,en}
u>(G−A)u. (7)

Moreover, we only need to obtain the diagonal elements of A (the current Hessian in practice), thus
the total complexity is O(n2) in each iteration2, which is acceptable and the same as the classical
quasi-Newton methods.

Second, from the proof of the greedy method, we discover that the random method by choosing u
from a spherically symmetric distribution, e.g.,

(Random SR1) u ∼ N (0, In) or u ∼ Unif(Sn−1), (8)

also has similar performance (in expectation) and the same running complexity O(n2) in each
iteration.

Rodomanov and Nesterov [19, Theorem 3.5] already showed that Gn = A if the uk for k ∈
{0, . . . , n − 1} are linearly independent. Thus, we only consider k ≤ n. Now let us estimate the
decrease in the measure τA(·) based on the direction u chosen from previous strategies. In the
following, the expectation considers all the randomness of the directions uk’s during iterations, and
when applied to the greedy method, we can view it with no randomness for the same notation.

Theorem 2.3 Under the SR1 update in Algorithm 1, we obtain that for the greedy method defined in
Eq. (7) or the random method defined in Eq. (8),

0 ≤ E τA(Gk) ≤
(

1− 1

n− k + 1

)
E τA(Gk−1) ≤

(
1− k

n

)
τA(G0), 1 ≤ k ≤ n. (9)

Hence, τA(Gk) (or E τA(Gk)) converges to zero superlinearly.

2.2 Linear convergence for BFGS update

We now consider the classical BFGS update in the same scheme and leave the proof in Appendix A.
Using the measure σA(·), we obtain that

σA(G+) = σA(G)− u>GA−1Gu

u>Gu
+ 1, G+ = BFGS(G,A,u). (10)

2Note that we can use Hessian-vector product to obtain Au in practice.
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Algorithm 1 Greedy/Random SR1 update

1: Initialization: Set G0 � A.
2: for k = 0, . . . , n− 1 do
3: Choose uk from

1) greedy method: uk = ūA(Gk), or
2) random method: uk ∼ Unif(Sn−1).

4: Compute Gk+1 = SR1(Gk,A,uk).

5: end for

Algorithm 2 Greedy/Random BFGS update

1: Initialization: Set G0 � A, L0 = G
−1/2
0 .

2: for k ≥ 0 do
3: Compute uk = L>k ũk with ũk from

1) greedy method: ũk = ũA(Lk), or
2) random method: ũk ∼ Unif(Sn−1).

4: Compute Gk+1 = BFGS(Gk,A,uk).
5: Compute Lk+1 based on Proposition 2.6.
6: end for

If we directly apply the greedy method or random method from the previous content, we could only
obtain the same linear convergence rate in [19, Theorem 2.5]. However, if we take advantage of the
current G, and choose a scaled direction such that u = L>ũ where L>L = G−1, we could simplify
the formulation and obtain a faster condition-number-free linear convergence rate. Specifically, the
greedy update after replacing u to L>ũ is as follows:

(Greedy BFGS) ũA(L) = arg max
ũ∈{e1,...,en}

ũ>L−>A−1L−1ũ

ũ>ũ
, (11)

and the random method is the same as the SR1 update used in Eq. (8).
(Random BFGS) ũ ∼ N (0, In) or ũ ∼ Unif(Sn−1), (12)

Now we give the linear convergence rate of our modified BFGS update.

Theorem 2.4 Under the BFGS update in Algorithm 2, we can obtain that for the greedy method
defined in Eq. (11) or the random method defined in Eq. (12),

0 ≤ EσA(Gk) ≤
(

1− 1

n

)
E σA(Gk−1) ≤

(
1− 1

n

)k
σA(G0), 1 ≤ k. (13)

Therefore, σA(Gk) (or EσA(Gk)) converges to zero linearly.

Remark 2.5 Note that the complexity in Eq. (11) is O(n3) because we have multiply-add operations
with (unknown) A−1. Hence we do not apply this greedy strategy in practice, but view it as a
theoretical result similar to the random strategy. Moreover, the random method is still practical, and
we show the efficiency of our scaled direction compared to the original direction in experiments.

Finally, we can employ an efficient way (with complexity O(n2)) for updating Lk. The main idea is
employing the rank-one update and the one-row appending update of QR decomposition with the
inverse BFGS update. In Proposition 2.6, we show how to compute Lk+1 from Lk with O(n2) flops.

Proposition 2.6 Suppose we already have Hk , G−1k = L>k Lk, where Lk is an upper triangular
matrix. Now we construct Lk+1 with O(n2) flops.

Step 1: Using the formulation in Golub and Van Loan [12, Section 12.5.1], we can obtain QR
decomposition of

Lk

(
Ik −

Auku
>
k

u>kAuk

)
= Lk −

Lk(Auk)

u>kAuk
u>k

with O(n2) flops because it is a rank-one change of Lk.

Step 2: We have Lk

(
In −

Auku
>
k

u>kAuk

)
= QkRk from Step 1, with an orthogonal matrix Qk ∈ Rn×n

and an upper triangular matrix Rk ∈ Rn×n. Denoting vk = uk√
u>k Auk

, we can write

Hk+1
(16)
= R>kQ

>
kQkRk +

uku
>
k

u>kAuk
= R>kRk + vkv

>
k =

(
vk R

>
k

)(v>k
Rk

)
.

Using the formulation in Golub and Van Loan [12, Section 12.5.3] for computing the QR decom-

position after appending a row, we can obtain
(
v>k
Rk

)
= Qk+1Rk+1 with only O(n2) flops, where

Qk+1 ∈ R(n+1)×n is a column orthogonal matrix and Rk+1 ∈ Rn×n is an upper triangular matrix.
This implies Hk+1 = R>k+1Rk+1, which satisfies our requirements.
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Algorithm 3 Greedy/Random SR1/BFGS methods for quadratic minimization

1: Initialization: Choose x0 ∈ Rn. Set G0 = LIn (or any G0 � A).
2: for k ≥ 0 do
3: Update xk+1 = xk −G−1k ∇f(xk). Choose one of the following update rules:
4: (i) SR1: Choose uk following Algorithm 1. Compute Gk+1 = SR1(Gk,A,uk).
5: (ii) BFGS: Choose uk following Algorithm 2. Compute Gk+1 = BFGS(Gk,A,uk).
6: end for

3 Unconstrained quadratic minimization

Based on the efficiency of the greedy/random SR1 and BFGS updates in matrix approximation, we
next turn to minimize the quadratic function (with a fixed Hessian):

f(x) =
1

2
x>Ax− b>x, (14)

where A is a positive definite matrix, and there exist µ,L > 0, s.t., µIn � A � LIn. We show the
detail in Algorithm 3, which is only for theoretical analysis. In practice, we use the inverse update
rules (Nocedal and Wright [16, Eq. (6.17) and Eq. (6.25)]) to update G−1k directly:

G−1+ = G−1 +
(In −G−1A)uu>(In −AG−1)

u>(A−AG−1A)u
, G+ = SR1(G,A,u); (15)

G−1+ =

(
In −

uu>A

u>Au

)
G−1

(
In −

Auu>

u>Au

)
+

uu>

u>Au
, G+ = BFGS(G,A,u). (16)

To estimate the convergence rate of Scheme (14), we measure the norm of the gradient of f as

λf (x) ,
√
∇f(x)>∇2f(x)−1∇f(x), x ∈ Rn. (17)

Note that this measure of optimality is directly related to the functional residual. Indeed, let x∗ =
A−1b be the minimizer of Eq. (14). Then we obtain

f(x)− f(x∗) =
1

2
(x− x∗)

>
A (x− x∗) =

1

2
(Ax− b)

>
A−1 (Ax− b) =

1

2
λf (x)2.

The following lemma shows how λf (·) varies after one iteration of process in Algorithm 3.

Lemma 3.1 (Rodomanov and Nesterov [19] Lemma 3.2) Let k ≥ 0, and let ηk ≥ 1 satisfy A �
Gk � ηkA. Then we have that λf (xk+1) ≤

(
1− 1

ηk

)
λf (xk) ≤ (ηk − 1)λf (xk).

Thus, to estimate how fast λf (xk) converges to 0, we need the upper bound of ηk, which is already
done in Subsections 2.1 and 2.2. Thus, we can guarantee a superlinear convergence of λf (xk) using
the greedy/random SR1 or BFGS update. The proof of Theorem 3.2 can be found in Appendix A.

Theorem 3.2 Under Algorithm 3, if we choose SR1 update, then we have

E
λf (xk+1)

λf (xk)
≤
(

1− k

n

)
tr(G0 −A)

µ
, 0 ≤ k ≤ n.

If we adopt BFGS update, then we have

E
λf (xk+1)

λf (xk)
≤
(

1− 1

n

)k
tr
[
(G0 −A)A−1

]
, k ≥ 0.

Thus, we see both SR1 and BFGS methods share superlinear convergence for {λf (xk)}. In particular,
for the SR1 update, our bound recovers the classical result in [16, Theorem 6.1], showing that the
update stops after finite steps because Gn = A and λf (xn+1) = 0. Moreover, we also give an exact
convergence rate during the entire optimization process. And the main decreasing term

(
1− k

n

)
for

the SR1 update as well as (1− 1
n )k for the BFGS update in the k-th iteration are independent of the

condition number κ of A, which improves the bound (1− 1
nκ )k in [19, Theorem 3.4].
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Algorithm 4 Greedy/Random SR1/BFGS methods for strongly self-concordant objective

1: Initialization: Choose x0 ∈ Rn. Set G0 = LIn,L0 = In/
√
L.

2: for k ≥ 0 do
3: Update xk+1 = xk −G−1k ∇f(xk).
4: Compute rk = ‖xk+1 − xk‖xk , G̃k = (1 +Mrk)Gk, L̃k = Lk/

√
1 +Mrk.

5: (i) Greedy/Random SR1: Choose uk = ū∇2f(xk+1)(G̃k), or uk ∼ Unif(Sn−1).
Compute Gk+1 = SR1(G̃k,∇2f(xk+1),uk).

6: (ii) Greedy/Random BFGS: Choose ũk = ũ∇2f(xk+1)(L̃k), or ũk ∼ Unif(Sn−1).
Compute Gk+1 = BFGS(G̃k,∇2f(xk+1), L̃>k ũk), and Lk+1 based on Proposition 2.6.

7: end for

4 Minimization of general functions

Finally, we consider the optimization of a more general machine learning objective with unfixed
Hessians: minx∈Rn f(x), where f : Rn → R is a twice differentiable function with positive definite
Hessians. Our goal is to extend the results in the previous sections, assuming that the methods can
start from a sufficiently good initial point x0. We use the same assumption strongly self-concordant
followed by Rodomanov and Nesterov [19].

Definition 4.1 (Strongly self-concordant) A function f : Rn → R is strongly self-concordant if the
Hessians of f are close to each other in the sense that there exists a constant M ≥ 0 s.t.

∇2f(y)−∇2f(x) �M‖y − x‖z∇2f(w), ∀ x,y, z,w ∈ Rn.

Rodomanov and Nesterov [19] have already mentioned several properties and examples of strongly
self-concordant function, such as a strongly convex function with Lipschitz continuous Hessian. Let
us now make one more common assumption about the function f as Rodomanov and Nesterov [19]
did, that the function f is µ-strongly convex and L-smooth, i.e., there exist L ≥ µ > 0 such that

µIn � ∇2f(x) � LIn, ∀ x ∈ Rn

and κ := L/µ. Unlike quadratic minimization, the true Hessian in each step varies. In order to make
Gk � ∇2f(xk) always hold, we adjust Gk before doing quasi-Newton update. Instructed from [19],
we also use the correction strategy, which enlarges the approximation Gk properly shown in Line 4
of Algorithm 4. Moreover, Algorithm 4 is only for theoretical analysis. We need to adopt the inverse
update rules (Eqs. (15) and (16)) in practice. Additionally, we assume that the constants M and L are
available for simplicity.

For the BFGS update, we can analyze how the Hessian approximation measure σx(G) , σ∇2f(x)(G)
changes after one iteration following [19]. The proof can be found in Appendix A.

Theorem 4.2 Suppose that in Algorithm 4 BFGS update is used, and that the initial point x0 is
sufficiently close to the solution:

Mλf (x0) ≤ ln 2

4κ(2n+ 1)
. (18)

Then for all k ≥ 0, we have

∇2f(xk) � Gk, Eσxk(Gk) ≤ 2nκ

(
1− 1

n

)k
, (19)

and

E
λf (xk+1)

λf (xk)
≤ 2nκ

(
1− 1

n

)k
. (20)

As for the SR1 update, the main difficulty compared to [19] is that we utilize a different measure τA(·)
instead of σA(·), resulting in a refined proof version below, and we leave the proofs in Appendix A.
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Figure 1: (a, b) Comparison of different direction choosing methods under the SR1 or BFGS update
for approximating a matrix A that µIn � A � LIn from G0 = LIn. (a) The variation of τA(Gk)
during Random SR1 (RaSR1) and our Greedy SR1 (GrSR1v2) update with nearly matched upper
bound. (b) The variation of σA(Gk) during our Random BFGS (RaBFGSv2) update and the original
random version (RaBFGSv1). (c) Comparison of SR1 and BFGS methods for quadratic objective.
Here we only depict RaSR1 method, while the other SR1-type methods share similar behavior.

Theorem 4.3 For Algorithm 4 with SR1 update, suppose that the initial point x0 is sufficiently close
to the solution:

Mλf (x0) ≤ ln 2

4κ(2nκ+ 1)
. (21)

Then for all k ≥ 0, we have

∇2f(xk) � Gk,Eσxk(Gk) ≤ 2nκ2
(

1− 1

n

)k
, (22)

and

E
λf (xk+1)

λf (xk)
≤ 2nκ2

(
1− 1

n

)k
. (23)

Corollary 4.4 Combining with [19, Theorem 4.7] (shown in Appendix B.1), if x0 satisfies
Mλf (x0) ≤ ln 3

2

4κ , we could obtain 1) for the greedy BFGS or greedy SR1 method,

λf (xk0+k) ≤
(

1− 1

n

)k(k−1)/2
·
(

1

2

)k
·
(

1− 1

2κ

)k0
· λf (x0), for all k ≥ 0,

where k0 = O (max{n, κ} ln(nκ)), 2) for the random BFGS or random SR1 method, with probability
1− δ for any δ ∈ (0, 1),

λf (xk0+k) ≤
(

1− 1

n+ 1

)k(k−1)/2
·
(

1

2

)k
·
(

1− 1

2κ

)k0
· λf (x0), for all k ≥ 0,

where k0 = O (max{n, κ} ln(nκ/δ)) .

Therefore, both greedy and random methods have non-asymptotic superlinear convergence rates.
Additionally, our superlinear rates are condition-number-free compared to the rates in [19].

5 Numerical experiments

In this section, we verify our theorems through numerical results for quasi-Newton methods.
Rodomanov and Nesterov [19] have already compared their proposed greedy quasi-Newton method
with the classical quasi-Newton methods. They showed that GrDFP, GrBFGS, GrSR1 (greedy
DFP, BFGS, SR1 methods) using directions based on ūA(G) = arg maxu∈{e1,...,en}

u>Gu
u>Au

, have
quite competitive convergence with the standard versions. They also presented the results for the
randomized versions RaDFP, RaBFGS, RaSR1, which choose directions directly from a standard
Euclidean sphere. They discovered that the randomized methods are slightly slower than the greedy
ones. However, the difference is not really significant.
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Figure 2: Comparison of SR1 and BFGS update for `2-regularized logistic regression applied with
‘a6a’ data from the LIBSVM collection of real-world data sets. We list the name of dataset, the
dimension n and the condition number κ under the corresponding γ in the title of each figure. The
lines of GrSR1v1 and GrSR1v2 are overlapped in some figures.

The difference between our algorithms and their methods mainly comes from the greedy strategy
for SR1 and the random strategy for BFGS3. Hence, we mainly focus on exhibiting our validity in
these schemes. We refer to GrSR1v2 as our revised method and GrSR1v1 as the previous method.
Similarly, we denote RaBFGSv2 that uses scaled directions (L>u) and RaBFGSv1 that directly uses
random directions u correspondingly. We use u ∼ Unif(Sn−1) in all experiments for brevity.

Matrix approximation. When using Algorithms 1 and 2 for approximating a matrix A � 0, we
show the measure as proved by Theorems 2.3 and 2.4 in Figures 1a and 1b. As Figure 1a depicts, our
greedy and random SR1 updates (GrSR1v2 and RaSR1) share superlinear convergence rate under
measure τA(·), while our theoretical bound matches them well. Moreover, Figure 1b describes the
behavior of the random BFGS update. Note that the greedy BFGS update we proposed does not
satisfy the O(n2) complexity, thus we leave it out. Our theory totally matches the linear convergence
of measure σA(·) in our modified random BFGS update (RaBFGSv2). However, directly choosing a
direction without scaling (RaBFGSv1) fails to give such bounds. Moreover, we also discover the
same findings under different condition numbers in Appendix C.1. Clearly, our methods provide
effective ways of approaching a positive definite Hessian matrix.

Quadratic minimization. We also consider unconstrained quadratic minimization with the same
positive definite matrix A and a randomly selected vector b ∈ Rn. Running Algorithm 3 with
SR1 and BFGS updates, we obtain the superlinear convergence of λf (·) shown in Figure 1c. Not
surprisingly, our RaBFGSv2 runs faster than RaBFGSv1, while we also have the theoretical guarantee.
At the same time, SR1-type methods converge to zero after n+ 1 steps because Gn = A. Here, we
only depict the RaSR1 update, while the other SR1-type methods share similar behavior. Although
our theoretical bound can not directly match the experiments due to the related initial terms τA(G0)

and σA(G0), the decay terms: (1− k/n) vs. (1− 1/n)
k already show the superiority of the SR1

method over the BFGS method in the quadratic minimization problem.

Regularized logistic regression. Next, we consider `2-regularized logistic regression:

f(w) =

N∑
i=1

ln
(

1 + e−yiw
>xi
)

+
γ

2
‖w‖2, w ∈ Rn,

where X = [x1, . . . ,xN ] ∈ Rn×N are training samples with the corresponding labels y1, . . . , yN ∈
{+1,−1}, and γ > 0 is the regularization coefficient. We follow the same experimental design but
take data from the LIBSVM collection of real-world data sets for binary classification problems [6].
And we do not apply the correction strategy (G̃k = (1 +Mrk)Gk) in Algorithm 4) recommended
by [19]. Other details are shown in Appendix C.2. In order to simulate the local convergence, we use
the same initialization after running several standard Newton’s steps to make measure ‖∇f(w0)‖
small (around 10−2 ∼ 101).

3There is no difference in the random SR1 method compared to Rodomanov and Nesterov [19], which
directly selects random directions. And our greedy BFGS method is not efficient (O(n3) in each iteration) as we
mentioned in Remark 2.5. Thus we leave it out.
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Figure 3: Comparison of SR1 and BFGS update for Regularized Log-Sum-Exp. The dimension n, the
number m of linear functions, the regularization coefficient γ and condition number κ are displayed
in the title of each graph. The lines of GrSR1v1 and GrSR1v2 are overlapped in each figure.

We show the results in Figure 2. As we can see, the general picture is the same as for the previous
objective. In particular, SR1-type methods are faster than BFGS-type methods, and the greedy
algorithms also converge more rapidly than the random algorithms. The only difference is that our
RaBFGSv2 may have slower convergence behavior than RaBFGSv1 under a small κ in Figure 2a. We
consider our scaled direction is more suitable for a constant Hessian matrix as the quadratic objective
has. Thus we still have a better convergence rate in the last few iterations when Hessians are nearly
unchanged in Figure 2a. However, the Hessian varies drastically in the initial period. Thus there
is less benefit under a more accurate Hessian approximation. When applied to the ill-conditioning
setting with a large κ in Figure 2b, we find our RaBFGSv2 could be faster than GrBFGSv1 and
RaBFGSv1. This implies that our proposed method has less dependence on the condition number κ.

Regularized Log-Sum-Exp. Followed by Rodomanov and Nesterov [19], we also present prelimi-
nary computational results for greedy and random quasi-Newton methods, applied to the following
test function with C = [c1, . . . , cm] ∈ Rn×m, b1, . . . , bm ∈ R, and γ > 0:

f(x) := ln

 m∑
j=1

ec
>
j x−bj

+
1

2

m∑
j=1

(
c>j x

)2
+
γ

2
‖x‖2 ,x ∈ Rn.

We also use the same synthetic data in [19, Section 5.1] and leave the detail in Appendix C.2. As
Figure 3 depicts, the BFGS-type methods are slower than the SR1-type methods. GrBFGSv1 and
RaBFGSv1 are faster than RaBFGSv2 in a small condition number case, but they become slower
than RaBFGSv2 when the condition number becomes huge. Therefore, we think our RaBFGSv2
which uses scaled direction indeed has less dependence on the condition number as our theory shows.

Overall, our proposed methods do not lose the superlinear convergence rate in the large condition
number schemes, while we also present the theoretical guarantee for these algorithms.

6 Conclusion

In this work, we have studied the behavior of two famous quasi-Newton methods: the SR1 and
the BFGS methods. We have presented different greedy methods in contrast to Rodomanov and
Nesterov [19], and the random version of these methods. In particular, we have provided the faster
Hessian approximation behavior and the condition-number-free (local) superlinear convergence rates
applied to quadratic or strongly self-concordant objectives. Moreover, the experiments corroborate
our analysis well. Note that our current results do not give the superlinear convergence rate of
the standard quasi-Newton methods with only gradient information. However, we hope that the
theoretical analysis and the related work would be useful for understanding the quasi-Newton methods
in a more specific view.
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A Missing Proofs

A.1 Proof of Theorem 2.3

Proof: Let Gk+1 = SR1(Gk,A,uk), then

(Gk+1 −A)uk
(2)
= (Gk −A)uk −

(Gk −A)uku
>
k (Gk −A)

u>k (Gk −A)uk
uk = 0.

Moreover, for any v such that (Gk −A)v = 0, we have

(Gk+1 −A)v = (Gk −A)v − (Gk −A)uku
>
k (Gk −A)

u>k (Gk −A)uk
v = 0.

Therefore, we obtain
(Gk −A)uj = 0,∀j < k. (24)

For the greedy method, we denote ūk = ūA(Gk), then from Eq. (24), we can assume ūk 6=
ūj ,∀k > j, and rank(Gk − A) ≤ n − k. At step k, without loss of generality, we assume
ūi = ei, i = 0, . . . , k−1. Then (Gk−A)ei = 0,∀i ≤ k−1, leading to (Gk−A)ii = 0,∀i ≤ k−1.
From Cauchy–Schwarz inequality and Gk � A, we obtain

ū>k (Gk −A)2ūk
ū>k (Gk −A)ūk

≥ ū>k (Gk −A)ūk
ū>k ūk

(7)
= max

1≤i≤n
(Gk −A)ii ≥

1

n− k
tr(Gk −A),

where the last inequality uses rank(Gk −A) ≤ n− k.

Therefore, the greedy choice of uk leads to

τA(Gk+1) ≤
(

1− 1

n− k

)
τA(Gk).

Consequently, we have

τA(Gk) ≤
(

1− 1

n− k + 1

)
τA(Gk−1) ≤ · · · ≤

 k∏
j=1

(
1− 1

n− j + 1

) τA(G0)

=

 k∏
j=1

n− j
n− j + 1

 τA(G0) =
n− k
n

τA(G0) =

(
1− k

n

)
τA(G0).

For the random method at step k, since Gk � A, we have λi , λi(Gk −A) ≥ 0,∀i ∈ {1, . . . , n}.
We let rk , rank(Gk − A) and denote Gk − A = UΛU> as the spectral decomposition of
Gk − A with an orthogonal matrix U and a diagonal matrix Λ = diag{λ1, . . . , λn}. Let v =
(v1, . . . , vn)> := U>u. We can show in expectation that

Eu
u>(Gk −A)2u

u>(Gk −A)u
= Ev

∑rk
i=1 λ

2
i v

2
i∑rk

i=1 λiv
2
i

≥ Ev

∑rk
i=1 λiv

2
i∑rk

i=1 v
2
i

=

rk∑
i=1

λiEv
v2i∑rk
j=1 v

2
j

=
1

rk
τA(Gk).

The first equality holds due to (Gk − A)2 = UΛ2U>, and the inequality holds due to the
Cauchy–Schwarz inequality and Gk � A:(

rk∑
i=1

λ2i v
2
i

)(
rk∑
i=1

v2i

)
≥

(
rk∑
i=1

λiv
2
i

)2

;

the second equality uses the fact that v is still spherically symmetric, thus also permutation invariant:

Ev
v21∑rk
j=1 v

2
j

= · · · = Ev

v2rk∑rk
j=1 v

2
j

=
1

rk

rk∑
i=1

Ev
v2i∑rk
j=1 v

2
j

=
1

rk
.
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Therefore, the random choice of uk leads to

Euk [τA(Gk+1)|Gk] ≤
(

1− 1

rk

)
τA(Gk).

Note that u0, . . . ,un−1 are linearly independent almost surely [23], thus rk = rank(Gk −A) ≤
n− k, a.s. We finally obtain

E τA(Gk) ≤
(

1− 1

n− k + 1

)
E τA(Gk−1) ≤ · · · ≤

k∏
j=1

(
1− 1

n− j + 1

)
τA(G0)

=

(
1− k

n

)
τA(G0).

�

Remark A.1 In fact, for the random method, when applied to σA(·), we could not handle the
expectation of the division of random variables with known expectations, because the random
variables themselves are non-independent as Rodomanov and Nesterov [19] mentioned. We take
τA(·) instead, which overcomes this difficulty due to the same spectral decomposition of (G−A)2

and G−A.

A.2 Proof of Theorem 2.4

Proof: For the greedy method at step k, since G−1k = L>k Lk, we obtain

max
ũ∈{e1,...,en}

ũ>L−>k A−1L−1k ũ

ũ>ũ
= max

i∈[n]

(
L−>k A−1L−1k

)
ii
≥ 1

n
tr
(
L−>k A−1L−1k

)
=

1

n
tr
((

L>k Lk
)−1

A−1
)

=
1

n
tr(GkA

−1).

(25)

Therefore, the greedy choice of uk = L>k ũk leads to

σA(Gk+1)
(10)
≤ σA(Gk)− u>kGkA

−1Gkuk
u>kGkuk

+ 1 = σA(Gk)−
ũ>k L

−>
k A−1L−1k ũk

ũ>k ũk
+ 1

(25)
≤ σA(Gk)− 1

n
tr(GkA

−1) + 1 =

(
1− 1

n

)
σA(Gk) ≤ · · · ≤

(
1− 1

n

)k
σA(G0).

For the random method, i.e., ũ ∼ N (0, In) or ũ ∼ Unif(Sn−1). We have that Eũ
ũũ>

ũ>ũ
= 1

nIn.
Hence, we obtain

Eũ
ũ>L−>k A−1L−1k ũ

ũ>ũ
= tr

[
L−>k A−1L−1k · Eũ

ũũ>

ũ>ũ

]
=

1

n
tr(L−>k A−1L−1k ) =

1

n
tr(GkA

−1),

(26)

Therefore, the random choice of uk = L>k ũk leads to

Euk [σA(Gk+1)|Gk]
(10)
= EukσA(Gk)− u>kGkA

−1Gkuk
u>kGkuk

+ 1

= EũkσA(Gk)−
ũ>k L

−>
k A−1L−1k ũk

ũ>k ũk
+ 1

(26)
= σA(Gk)− 1

n
tr(GkA

−1) + 1 =

(
1− 1

n

)
σA(Gk),

showing that

E σA(Gk) =

(
1− 1

n

)
E σA(Gk−1) = · · · =

(
1− 1

n

)k
σA(G0).

�
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A.3 Proof of Theorem 3.2

Proof: We denote ηk =
∥∥A−1/2GkA

−1/2
∥∥
2
, then A � Gk � ηkA. Hence we get

ηk − 1 ≤
∥∥∥A−1/2 (Gk −A)A−1/2

∥∥∥
2

≤ tr
(
A−1/2 (Gk −A)A−1/2

)
(6)
= σA(Gk) (27)

≤ tr (Gk −A)

µ

(5)
=
τA(Gk)

µ
. (28)

1). From Eq. (9), we know that under SR1 update,

E(ηk − 1)
(28)
≤ EτA(Gk)

µ

(9)
≤
(

1− k

n

)
τA(G0)

µ
.

By Lemma 3.1, this implies

E
λf (xk+1)

λf (xk)
≤ E(ηk − 1) ≤

(
1− k

n

)
tr(G0 −A)

µ
.

2). From Eq. (13), we know that under BFGS update,

E(ηk − 1)
(27)
≤ EσA(Gk)

(13))
≤
(

1− 1

n

)k
σA(G0).

By Lemma 3.1, this implies

E
λf (xk+1)

λf (xk)
≤ E(ηk − 1) ≤

(
1− 1

n

)k
tr
[
(G0 −A)A−1

]
.

�

A.4 Proof of Theorem 4.2

We need several Lemmas from Rodomanov and Nesterov [19].

Lemma A.2 (Rodomanov and Nesterov [19] Lemma 4.2) Let r , ‖y−x‖x for x,y ∈ Rn. Then

∇2f(x)

1 +Mr
� ∇2f(y) � (1 +Mr)∇2f(x). (29)

Also, for J ,
∫ 1

0
∇2f(x + t(y − x))dt and v ∈ {x,y}, we have

1

1 + Mr
2

∇2f(v) � J �
(

1 +
Mr

2

)
∇2f(v).

Lemma A.3 (Rodomanov and Nesterov [19] Lemma 4.3 and Lemma 4.4) Let x ∈ Rn, and a
symmetric matrix G, such that ∇2f(x) � G � η∇2f(x), for some η ≥ 1. Let x+ ∈ Rn, and
r = ‖x+ − x‖x. Then

G̃ , (1 +Mr)G � ∇2f(x+),

and for all u ∈ Rn and τ ∈ [0, 1], we have

∇2f(x+) � Broydτ

(
G̃,∇2f(x+),u

)
�
[
(1 +Mr)

2
η
]
∇2f(x+).

More specifically, if x+ = x −G−1∇f(x), and letting λ , λf (x) be such that Mλ ≤ 2, then,
r ≤ λ, and

λf (x+) ≤
(

1 +
Mλ

2

)
η − 1 + Mλ

2

η
λ.
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Lemma A.4 (Modified from Rodomanov and Nesterov [19] Lemma 4.8) Let x ∈ Rn, and a
symmetric matrix G, such that∇2f(x) � G. Let x+ ∈ Rn, and r = ‖x+−x‖x, G̃ = (1 +Mr)G,
G̃−1 = L̃>L̃, and u follows from Algorithm 2 applied with G̃,∇2f(x+). Then we have

Eũσx+
(BFGS(G̃,∇2f(x+), L̃>ũ)) ≤

(
1− 1

n

)
(1 +Mr)

2

(
σx(G) +

2nMr

1 +Mr

)
,

Proof: We already know from Lemma A.3 that∇2f(x+) � G̃. Then by Theorem 2.4, we have

Eũσx+(BFGS(G̃,∇2f(x+), L̃>ũ)) ≤
(

1− 1

n

)
σx+(G̃),

The remaining proof is same as [19, Lemma 4.8]. To make the paper self-contained, we also show
the detail below.

σx+
(G̃)

(6)
=

〈
∇2f(x+)−1, G̃

〉
− n = (1 +Mr)

〈
∇2f(x+)−1,G

〉
− n

(29)
≤ (1 +Mr)

2 〈∇2f(x)−1,G
〉
− n (6)

= (1 +Mr)
2

(σx(G) + n)− n

= (1 +Mr)
2
σx(G) + n

(
(1 +Mr)

2 − 1
)

= (1 +Mr)
2
σx(G) + 2nMr

(
1 +

Mr

2

)
≤ (1 +Mr)

2

(
σx(G) +

2nMr

1 +Mr

)
.

�

Now we turn to the main proof of Theorem 4.2.

Proof: The derivation is same as [19, Theorem 4.9] by using Lemma A.4. Denote λk , λf (xk),
σk , σxk(Gk) for k ≥ 0. In view of [19, Theorem 4.7], shown in Appendix B.1, since the initial
condition ln 2

4κ(2n+1) ≤
ln 3

2

4κ , the first relation in Eq. (19) is indeed true, and also

M

k∑
i=0

λi
(51)
≤ Mλ0

k∑
i=0

(
1− µ

2L

)i
≤ 2L

µ
Mλ0

(18)
≤ ln 2

2(2n+ 1)
. (30)

Denote θk := σk + 2nMλk. Let us show by induction that for all k ≥ 0, we have

Eθk ≤
(

1− 1

n

)k
2nL

µ
. (31)

Indeed, since G0 = LIn and µIn ≤ ∇2f(x0) ≤ LIn, we have

θ0 = σ0 + 2nMλ0
(6)
= tr

(
∇2f(x0)−1G0

)
− n+ 2nMλ0

≤ tr

(
∇2f(x0)−1 · L

µ
∇2f(x0)

)
− n+ 2nMλ0 = n

(
L

µ
− 1

)
+

n ln 2

2κ(2n+ 1)
≤ nL

µ
.

(32)

Therefore, for k = 0, Eq. (31) is satisfied. Now suppose that it is also satisfied for some k ≥ 0.

Since∇2f(xk) � Gk, we know that

Gk −∇2f(xk) � σk∇2f(xk),

or equivalently,
Gk � (1 + σk)∇2f(xk).

Since Eq. (30) shows Mλk ≤ 2, we can apply Lemma A.3, leading to

rk , ‖xk+1 − xk‖xk ≤ λk, (33)
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and

λk+1 ≤
(

1 +
Mλk

2

)
σk + Mλk

2

1 + σk
λk ≤

(
1 +

Mλk
2

)
(σk + 2nMλk)λk

≤ e2Mλk (σk + 2nMλk)λk.

(34)

Further, by Lemma A.4, we have

Eukσk+1 ≤
(

1− 1

n

)
(1 +Mrk)

2

(
σk +

2nMrk
1 +Mrk

)
(33)
≤

(
1− 1

n

)
(1 +Mλk)

2
(σk + 2nMλk)

≤
(

1− 1

n

)
e2Mλk (σk + 2nMλk) .

Note that 1
2 ≤ 1− 1

n because n ≥ 2, and take expectation for all randomness. We obtain

E [σk+1 + 2nMλk+1]

≤ E
(

1− 1

n

)
e2Mλk (σk + 2nMλk) + e2Mλk2nM (σk + 2nMλk)λk

≤ E
(

1− 1

n

)
e2Mλk (σk + 2nMλk) +

(
1− 1

n

)
e2Mλk4nM (σk + 2nMλk)λk

= E
(

1− 1

n

)
e2Mλk (1 + 4nMλk) (σk + 2nMλk)

≤ E
(

1− 1

n

)
e2(2n+1)Mλk (σk + 2nMλk)

(51)
≤ E

(
1− 1

n

)
e2(2n+1)Mλ0(1− µ

2L )
k

(σk + 2nMλk) .

Therefore

Eθk+1 ≤
(

1− 1

n

)
e2(2n+1)Mλ0(1− µ

2L )
k

Eθk

≤
(

1− 1

n

)k+1

e2(2n+1)Mλ0
∑k
i=0(1−

µ
2L )

i

Eθ0 (35)

≤
(

1− 1

n

)k+1

e4κ(2n+1)Mλ0θ0

(18)
(32)
≤

(
1− 1

n

)k+1

2nκ. (36)

Thus, Eq. (31) is proved.

Let us fix some k ≥ 0. Since λk ≥ 0, we have

Eσk ≤ Eσk + 2nMλk = Eθk
(31)
≤
(

1− 1

n

)k
2nκ.

This proves the second relation in Eq. (19). Finally,

Eλk+1/λk
(34)
≤ Ee2Mλkθk ≤ Ee2(2n+1)Mλkθk

(51)
≤ e2(2n+1)Mλ0(1− µ

2L )
k

Eθk
(35)
≤
(

1− 1

n

)k
e2(2n+1)Mλ0

∑k
i=0(1−

µ
2L )

i

θ0
(18),(32)
≤

(
1− 1

n

)k
2nκ.

Thus, Eq. (20) is proved. �
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A.5 Proof of Theorem 4.3

Proof: We denote the sequence {ηk} that satisfies

tr
(
Gk −∇2f(xk)

)
= ηk tr

(
∇2f(xk)

)
, (37)

and

λk , λf (xk+1), rk , ‖xk+1 − xk‖xk , σk , σ∇2f(xk)(Gk).

From Theorem 2.3, we obtain

Euk tr
(
Gk+1 −∇2f(xk+1)

)
≤
(

1− 1

n

)
tr
(
G̃k −∇2f(xk+1)

)
≤
(

1− 1

n

)
tr

(
(1 +Mrk)Gk −

1

1 +Mrk
∇2f(xk)

)
(37)
=

(
1− 1

n

)(
(1 +Mrk) (1 + ηk)− 1

1 +Mrk

)
tr
(
∇2f(xk)

)
≤
(

1− 1

n

)(
(1 +Mrk)

2
(1 + ηk)− 1

)
tr
(
∇2f(xk+1)

)
,

where the first inequality uses Theorem 2.3 and the second inequality uses Lemma A.2. The last
inequality uses Lemma A.2 again.

We can apply [19, Theorem 4.7], shown in Appendix B.1, since the initial condition ln 2
4κ(1+2nκ) ≤

ln 3
2

4κ ,

and our algorithm can be viewed as a specific version of theirs. Hence Mλk ≤
(
1− µ

2L

)k
Mλ0 < 2,

and using Lemma A.3, we obtain rk ≤ λk. Therefore

Euk ηk+1 ≤
(

1− 1

n

)(
(1 +Mrk)

2
(1 + ηk)− 1

)
≤
(

1− 1

n

)
(1 +Mrk)

2

(
ηk + 1− 1

(1 +Mrk)
2

)

≤
(

1− 1

n

)
(1 +Mrk)

2

(
ηk +

2Mrk + (Mrk)2

(1 +Mrk)
2

)

≤
(

1− 1

n

)
(1 +Mrk)

2
(ηk + 2Mrk)

≤
(

1− 1

n

)
(1 +Mλk)

2
(ηk + 2Mλk) .

(38)

Moreover, since µIn � ∇2f(x) � LIn, we have

σk = tr
((
Gk−∇2f(xk)

)
∇2f(xk)−1

)
≤ 1

µ
tr
(
Gk−∇2f(xk)

) (37)
=

ηk
µ

tr
(
∇2f(xk)

)
≤ ηknκ.

(39)
Applying Lemma A.3 and noting that Gk � (1 + σk)∇2f(xk), we get

λk+1 ≤
(

1 +
Mλk

2

)
σk + Mλk

2

1 + σk
λk

(39)
≤
(

1 +
Mλk

2

)(
ηknκ+

Mλk
2

)
λk. (40)
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Combining Eq. (40) and Eq. (38), we obtain
E ηk+1 + 2Mλk+1

≤ E
(

1− 1

n

)
(1 +Mλk)

2
(ηk + 2Mλk) +

(
1 +

Mλk
2

)(
ηknκ+

Mλk
2

)
2Mλk

≤ E
(

1− 1

n

)
(1 +Mλk)

2
(ηk + 2Mλk) + (1 +Mλk) (ηk + 2Mλk) 2nκMλk

≤ E
(

1− 1

n

)
(1 +Mλk)

2
(ηk + 2Mλk) +

(
1− 1

n

)
(1 +Mλk)

2
(ηk + 2Mλk) 4nκMλk

≤ E
(

1− 1

n

)
(1 +Mλk)

2
(ηk + 2Mλk) (4nκMλk + 1)

≤ E
(

1− 1

n

)
e2Mλk+4nκMλk (ηk + 2Mλk) ,

(41)
where the third inequality uses 1 ≤ 2

(
1− 1

n

)
because n ≥ 2. Now we define

θk+1 , ηk + 2Mλk.

In the following, we prove by induction that

Eθk ≤
(

1− 1

n

)k
2κ. (42)

1) From the initial condition: Mλ0 ≤ ln 2
4κ(1+2nκ) , and note that G0 � κ∇2f(x0), thus

θ0 = η0 + 2Mλ0 ≤ κ− 1 +
ln 2

2κ(1 + 2nκ)
≤ κ. (43)

2) For k ≥ 1, from Eq. (41), we obtain

Eθk+1 ≤ E
(

1− 1

n

)
e(2+4nκ)Mλkθk

(51)
≤

(
1− 1

n

)
e(2+4nκ)Mλ0(1− µ

2L )
k

Eθk

≤
(

1− 1

n

)k+1

e(2+4nκ)Mλ0
∑k
i=0(1−

µ
2L )

i

θ0 (44)

≤
(

1− 1

n

)k+1

e2κ(2+4nκ)Mλ0θ0

(21),(43)
≤

(
1− 1

n

)k+1

2κ. (45)

Combining 1) and 2), Eq. (42) holds for all k ≥ 0. Therefore,

Eηk ≤ Eθk ≤
(

1− 1

n

)k
2κ,

and

Eσk
(39)
≤ E ηknκ ≤ 2nκ2

(
1− 1

n

)k
.

This proves the second relation in Eq. (22). Finally, from Eq. (40),

Eλk+1/λk
(40)
≤ Ee2Mλknκθk ≤ Ee(2+4nκ)Mλknκθk

(51)

≤ e(2+4nκ)Mλ0(1− µ
2L )

k

nκEθk
(44)
≤

(
1− 1

n

)k
nκe(2+4nκ)Mλ0

∑k
i=0(1−

µ
2L )

i

θ0

(21),(43)
≤

(
1− 1

n

)k
2nκ2.

Thus, Eq. (23) is proved. �

19



A.6 Proof of Corollary 4.4

We first give a probabilistic perspective of Theorem 4.2, particularly for the random method.

Corollary A.5 Suppose that in Algorithm 4, the random BFGS update is used, and that the initial
point x0 is sufficiently close to the solution:

Mλf (x0) ≤ ln 2

4κ(2n+ 1)
. (46)

Then with probability 1− δ, we have

λf (xk+1) ≤ 2n3κ

δ

(
1− 1

n+ 1

)k
λf (xk), for all k ∈ N. (47)

Proof: Note that λf (xk) ≥ 0. Using Markov’s inequality, we have

P

(
λf (xk+1)

λf (xk)
≥ 2nκ

εk

(
1− 1

n

)k)
≤ Eλf (xk+1)/λf (xk)

2nκ
εk

(
1− 1

n

)k (20)
≤ εk. (48)

Choosing εk = δ(1− q)qk for some positive q < 1, we have

P

(
λf (xk+1)

λf (xk)
≥ 2nκ

εk

(
1− 1

n

)k
,∃ k ∈ N

)
≤

∞∑
k=0

P

(
λf (xk+1)

λf (xk)
≥ 2nκ

εk

(
1− 1

n

)k)
(48)
≤

∞∑
k=0

εk =

∞∑
k=0

δ(1− q)qk = δ.

Therefore, we obtain with probability 1− δ,

λf (xk+1) ≤
(

1− 1
n

q

)k
· 2nκ

(1− q)δ
· λf (xk),∀k ∈ N.

If we set q = 1− 1/n2, we could obtain with probability 1− δ,

λf (xk+1) ≤ 2n3κ

δ

(
1 +

1

n

)−k
λf (xk) =

2n3κ

δ

(
1− 1

n+ 1

)k
λf (xk), for all k ∈ N.

�

Moreover, Theorem 4.3 could also convert to such formulation with the same argument.

Corollary A.6 For Algorithm 4 with the random SR1 update, suppose that the initial point x0 is
sufficiently close to the solution:

Mλf (x0) ≤ ln 2

4κ(2nκ+ 1)
. (49)

Then with probability 1− δ, we have

λf (xk+1) ≤ 2n3κ2

δ

(
1− 1

n+ 1

)k
λf (xk),∀k ∈ N. (50)

The proof is totally same as the random BFGS method, so we omit it. Now we turn to the proof of
Corollary 4.4.

Proof: 1) For the greedy methods, there is no randomness. We can apply Theorems 4.2 and 4.3
directly.

For the greedy BFGS method, Theorem 4.2 already shows the superlinear convergence rate of λf (xk).
Now we combine this result with [19, Theorem 4.7] to give the whole period convergence estimator.
Denote by k1 ≥ 0 the number of the first iteration, for which(

1− 1

2κ

)k1
≤ 1

2n+ 1
.
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Clearly, k1 ≤ 2κ ln(2n+ 1).

Since the initial point x0 is sufficiently close to the solution: Mλf (x0) ≤ ln 3
2

4κ , and reusing the result
of [19, Theorem 4.7], we obtain

Mλf (xk1) ≤M
(

1− 1

2κ

)k1
λf (x0) ≤ ln 2

4κ (2n+ 1)
,

which satisfies the initial condition in Theorem 4.2.

Denote by k2 ≥ 0 the number of the first iteration, for which(
1− 1

n

)k2
2nκ ≤ 1

2
.

Clearly, k2 ≤ n ln(4nκ).

By Theorem 4.2, for all k ≥ 0, we have

λf (xk1+k2+k+1) ≤
(

1− 1

n

)k2+k
2nκλf (xk1+k2+k) ≤

(
1− 1

n

)k
1

2
λf (xk1+k2+k).

Therefore,

λf (xk1+k2+k) ≤
(

1− 1

n

)k(k−1)/2(
1

2

)k
λf (xk1+k2),

and

λf (xk1+k2) ≤
(

1− 1

2κ

)k1+k2
λf (x0).

Finally, choosing k0 = k1 + k2 = O (max{n, κ} ln(nκ)), we obtain

λf (xk0+k) ≤
(

1− 1

n

)k(k−1)/2(
1

2

)k (
1− 1

2κ

)k0
λf (x0).

We can give similar analysis for the greedy SR1 method with k1 ≤ 2κ ln(2nκ + 1) and k2 ≤
n ln(4nκ2). Thus k0 = k1 + k2 = O (max{n, κ} ln(nκ)) as well.

2) For the random methods, we can apply Corollary A.5 and Corollary A.6 to give the rates.

For the random BFGS method, Corollary A.5 already shows the superlinear convergence rate of
λf (xk). Now we combine this result with [19, Theorem 4.7] to give the whole period convergence
estimator. Denote by k1 ≥ 0 the number of the first iteration, for which(

1− 1

2κ

)k1
≤ 1

2n+ 1
.

Clearly, k1 ≤ 2κ ln(2n+ 1).

Since the initial point x0 is sufficiently close to the solution: Mλf (x0) ≤ ln 3
2

4κ , and reusing the result
of [19, Theorem 4.7], we obtain

Mλf (xk1) ≤M
(

1− 1

2κ

)k1
λf (x0) ≤ ln 2

4κ (2n+ 1)
,

which satisfies the initial condition in Corollary A.5.

Denote by k2 ≥ 0 the number of the first iteration, for which

2n3κ

δ

(
1− 1

n+ 1

)k2
≤ 1

2
.

Clearly, k2 ≤ (n+ 1) ln(4n3κ/δ).
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By Theorem 4.3, for all k ≥ 0, we have with probability 1− δ for any δ ∈ (0, 1)

λf (xk1+k2+k+1) ≤ 2n3κ

δ

(
1− 1

n+ 1

)k2+k
λf (xk1+k2+k) ≤

(
1− 1

n+ 1

)k
· 1

2
λf (xk1+k2+k).

Therefore,

λf (xk1+k2+k) ≤
(

1− 1

n+ 1

)k(k−1)/2(
1

2

)k
λf (xk1+k2),

and

λf (xk1+k2) ≤
(

1− 1

2κ

)k1+k2
λf (x0).

Finally, choosing k0 = k1 + k2 = O (max{n, κ} ln(nκ/δ)), we obtain

λf (xk0+k) ≤
(

1− 1

n+ 1

)k(k−1)/2(
1

2

)k (
1− 1

2κ

)k0
λf (x0).

We can give similar analysis for the random SR1 method with k1 ≤ 2κ ln(2nκ + 1) and k2 ≤
(n+ 1) ln(4n3κ2/δ). Thus k0 = k1 + k2 = O (max{n, κ} ln(nκ/δ)) as well. �

B Auxiliary Theorem

Algorithm 5 Quasi-Newton Method [19, Scheme (4.17)]

1: Initialization: Choose x0 ∈ Rn. Set G0 = LIn.
2: for k ≥ 0 do
3: Update xk+1 = xk −G−1k ∇f(xk).
4: Compute rk = ‖xk+1 − xk‖xk and set G̃k = (1 +Mrk)Gk.
5: Choose uk ∈ Rn and τk ∈ [0, 1].
6: Compute Gk+1 = Broydτk

(
G̃k,∇2f(xk+1),uk

)
.

7: end for

Theorem B.1 (Rodomanov and Nesterov [19] Theorem 4.7) Under Algorithm 5, suppose the ini-
tial point x0 is sufficiently close to the solution:

Mλf (x0) ≤
ln 3

2

4κ
.

Then, for all k ≥ 0, we have

∇2f(xk) � Gk � e2M
∑k−1
i=0 λf (xi)

L

µ
∇2f(xk) � 3L

2µ
∇2f(xk),

and

λf (xk) ≤
(

1− µ

2L

)k
λf (x0). (51)

Remark B.2 Note that the choice of uk and the update rule in Algorithm 5 are arbitrary, thus our
algorithms can be viewed as a special case. Therefore, Theorem B.1 always holds as long as the
initial point is sufficiently close to the solution.

C Missing Experiments and Detail

C.1 Condition-number-free Property of Our Modified BFGS Update

For the matrix approximation task in Section 5, we list the variation of σA(Gk) with various condition
numbers κ shown in Figure 4. We find scaled directions (L>u) have the same convergence rates in
different condition numbers. Thus we conclude our scaled directions give a condition-number-free
convergence rate as our theory shows. However, directly selecting random directions (RaBFGSv1)
converges much slower than the scaled random directions (RaBFGSv2), and the large condition
number could cause slow convergence.
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Figure 4: The variation of σA(Gk) during our Random BFGS (RaBFGSv2) update and the original
random version (RaBFGSv1) for approximating a matrix A that µIn � A � LIn with various κ.

C.2 Experimental Settings in Section 5

Regularized Logistic Regression. The gradient of function f is

∇f(w) = −
N∑
i=1

eyiw
>xi

1 + eyiw>xi
· yixi + γw, w ∈ Rn,

and the Hessian is

∇2f(w) =

N∑
i=1

eyiw
>xi(

1 + eyiw>xi
)2 · xix>i + γIn, w ∈ Rn.

Thus γIn � ∇2f(w) � LIn with L = λmax(XX>)/4 + γ, and κ = L/γ. In particular, the
Hessian-vector product for this function can be computed with the similar complexity of that for
computing the gradient, guaranteeing O(nN) complexity in each step as below

∇2f(w)v =

N∑
i=1

eyiw
>xi(

1 + eyiw>xi
)2 · (x>i v) · xi + γv, w ∈ Rn.

We compare ‖∇f(wk)‖ obtained by different methods.

Regularized Log-Sum-Exp. We need access to the gradient of function f :

∇f(x) = g(x) +

m∑
j=1

(
c>j x

)
cj + γx, g(x) :=

m∑
j=1

πj(x)cj ,

where

πj(x) :=
ec
>
j x−bj∑m

i=1 e
c>i x−bi

∈ [0, 1], j = 1, . . . ,m.

Thus we can see ∇f(x) can be computed in O(mn) operations for a given point x ∈ Rn. Moreover,
we have analytic Hessian and Hessian-vector product expression below:

∇2f(x) =

m∑
j=1

(πj(x) + 1) cjc
>
j − g(x)g(x)> + γIn,

and for a given direction h ∈ Rn,

∇2f(x)h =

m∑
j=1

(πj(x) + 1)
(
c>j h

)
cj −

(
g(x)>h

)
g(x) + γh.

Hence, the Lipschitz constant of the gradient of f can be taken as L = 2λmax(CC>) + γ, and
κ = L/γ. As mentioned in [19, Section 5.1], the strong self-concordancy parameter is M = 2. So
we apply the correction strategy (G̃k = (1 +Mrk)Gk).
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We also adopt the same synthetic data as [19, Section 5.1]. First, we generate a collection of random
vectors ĉ1, . . . , ĉm with entries, uniformly distributed in the interval [−1, 1]. Then we generate
b1, . . . , bm from the same distribution. Using this data, we form a preliminary function

f̂(x) := ln

 m∑
j=1

eĉ
>
j x−bj

 ,

and finally define
cj := ĉj −∇f̂(0), j = 1, . . . ,m.

Note that by construction

∇f(0) =
1∑m

i=1 e
−bi

m∑
j=1

e−bj
(
ĉj −∇f̂(0)

)
= 0.

So the unique minimizer of our test function is x∗ = 0. The starting point x0 for all methods is the
same and generated randomly from the uniform distribution on the standard Euclidean sphere of
radius 1/n centered at the minimizer, i.e., x0 ∼ Unif

(
1
nS

n−1). We compare ‖∇f(xk)‖ obtained
by different methods.
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trials may cause different nemerical results, which can not be observed clearly in one
graph.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The experiments is certainly simple
and easy to run under CPUs.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] These datasets are common.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] These datasets are common.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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