The Lazy Online Subgradient Algorithm is Universal on Strongly Convex Domains

Daron Anderson, Douglas Leith

Advances in Neural Information Processing Systems 34 (NeurIPS 2021)

We study Online Lazy Gradient Descent for optimisation on a strongly convex domain. The algorithm is known to achieve $O(\sqrt N)$ regret against adversarial opponents; here we show it is universal in the sense that it also achieves $O(\log N)$ expected regret against i.i.d opponents. This improves upon the more complex meta-algorithm of Huang et al \cite{FTLBall} that only gets $O(\sqrt {N \log N})$ and $ O(\log N)$ bounds. In addition we show that, unlike for the simplex, order bounds for pseudo-regret and expected regret are equivalent for strongly convex domains.