
Appendix I: Simulation Plots

In Section 5 we discuss our simulations on `p unit balls. The hyperparameters are the exponent p,
dimension d, parameter r that determines the expected cost vector, and noise types (1) and (2). For
d = 32, p = 1.5 and a range of r-values Figure 1 shows the worst performance for noise types (1), (2)
occurs for r = 0, 8 respectively. Figure 3 considers both worst cases and varies the dimension.

Figure 3: Online Lazy Gradient Descent on the `1.5 unit ball, varying dimension.

Figure 3 shows the performance improves slightly in higher dimension for noise type (1) and degrades
in higher dimension for noise type (2). Figure 4 varies the exponent p for both worst cases.

Figure 4: Online Lazy Gradient Descent Descent on the `p unit ball, varying p.
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Figure 4 shows that in all cases the performance degrades as p→ 1; though for noise type (1) it also
takes longer for the worse performance to emerge. This is unsurprising since the strong convexity
parameter m = (p− 1)d

1
2−

1
p of the `p unit ball (see Corollary 2 of [17]) tends to 0 as p→ 1. Hence

the O
(
L2

m logN
)

bound in Theorems 1 and 3 also tends to infinity.

Next we present additional plots for our simulations on Schatten matrix norm unit balls. Again the
hyperparameters are the exponent p, dimension d, parameter r that determines the expected cost
vector, and noise types (1),(2) and (3). For d = 5, p = 1.5 and a range of r-values Figure 2(a) shows
the worst performance for noise types (1) occurs for r = 0. Figure 5 shows the different noise types
have virtually identical behaviour.

Figure 5: Online Lazy Gradient Descent on the Schatten ball Bp(1), varying cost vectors.

Figure 6 varies the dimension and parameter p. Small dimension seems to give slightly better
performance. Similar to before the performance degrades as p→ 1, though the influence of p is less
significant than in Figure 4 for `p balls.

Figure 6: Online Lazy Gradient Descent on the Schatten ball Bp(1) varying p and dimension.

Finally we prove Lemma 13 to justify only considering the expectation to be a diagonal matrix.

Lemma 13. Suppose a1, a2, . . . ∈ Rd×d are i.i.d cost vectors with E[an] = a. There is another set of
i.i.d cost vectors b1, b2, . . . such that E[bn] = b is diagonal and ‖an − a‖ = ‖bn − b‖; ‖an‖ = ‖bn‖;
‖a‖ = ‖b‖ and the expected regret of playing Lazy Gradient Descent on Bp(1) against a1, a2, . . .
with x0 = 0 is the same as playing against b1, b2, . . . with x0 = 0.

Proof. Let X ⊂ Rd be an arbitrary domain, c1, c2, be cost vectors and L : Rd → Rd an orthogonal
transformation with L(X) = X . The actions of Lazy Gradient Descent with x0 = 0 against cn are
xn = argminx∈X

∥∥x− η√
n

∑n
i=1 ci

∥∥. Since L is an isometry we have xn = argminx∈X

∥∥∥L(x−
η√
n

∑n
i=1 ci

)∥∥ = argminx∈X
∥∥Lx− η√

n

∑n
i=1 c̃i

∥∥ for c̃i = Lci. The minimum is achieved when
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Lx = x̃n where x̃n are the actions of Lazy Gradient Descent with x0 = 0 against c̃n. Hence we have
xn = L−1x̃n = L∗x̃n. Similarly each x∗ ∈ arg minx∈X

∑N
i=1 ci · x has the form L∗x̃∗ for some

x̃∗ ∈ arg minx∈X
∑N
i=1 c̃i ·x. Hence the regret against cn can be writtenRN =

∑N
i=1 ci ·(xi−x∗) =∑N

i=1 ci · L∗(x̃i − x̃∗) =
∑N
i=1(Lci) · (x̃i − x̃∗) =

∑N
i=1 c̃i · (x̃i − x̃∗) and we see the regret for

playing against cn is the same as playing against c̃n.

To define bn let E[an] = a = UΣV be the singular value decomposition and bn = U∗anV
∗. Then

E[bn] = U∗E[an]V ∗ = U∗UΣV V ∗ = Σ is diagonal as required.

We claim the linear operator L : Rd×d → Rd×d; A 7→ U∗AV ∗ is orthogonal with respect to the
inner product A • B =

∑
i,j AijBij . It is enough to show A 7→ AV ∗ and A 7→ U∗A or equivalently

the inverses A 7→ AV and A 7→ UA are orthogonal. For write.

UA • B =
∑
i,j

(UA)ijBij =
∑
i,j

(∑
k

UikAkj

)
Bij =

∑
i,j,k

AkjUikBij =
∑
i,j,k

AkjU
∗
kiBij

=
∑
j,k

Akj

(∑
i

U∗kiBij

)
=
∑
j,k

Akj(U
∗B)kj =

∑
i,j

Aij(U
∗B)ij = A • (U∗B)

Hence the adjoint of A 7→ UA is A 7→ U∗B. Since U is orthogonal this is also the inverse and so
A 7→ UA is orthogonal. The proof for A 7→ AV is similar. Hence by composition L is orthogonal.
Thus it is an isometry and we have ‖bn − b‖ = ‖Lan − La‖ = ‖L(an − a)‖ = ‖an − a‖ and
likewise ‖an‖ = ‖bn‖ and ‖a‖ = ‖b‖.
Once we have shown L preserves Bp(1), the first part of the proof says playing Lazy Gradient
Descent against a1, a2 . . . gives the same regret as playing against b1, b2 . . .. To see L preserves
Bp(1) observe for anyA with singular value decompositionA = U1Σ1V1 that LA has decomposition
A = U2Σ1V2 for U2 = U∗U1 and V2 = V1V

∗. In particular the singular values are unchanged and
‖LA‖S(p) = ‖A‖S(p).

Appendix II: Differential Geometry

Our proof of Theorem 1 focuses on how the actions xn approach the expected minimiser x∗ in terms
of both distance and direction. By Assumption 1 the boundary is a smooth surface, and this motivates
our use of differential geometry results. For comparison the existing literature focuses on the costs
rather than the actions, and presents no reason to focus on the boundary surface.

Strong convexity of the domain is encoded in the differential geometry of the boundary (See Proposi-
tion 4 of [20]). For a one dimension function f : R→ R with second derivative f ′′ we have m-strong
convexity if and only if f ′′(x) ≥ m for all x ∈ R. The second derivative can be thought of as the rate
of change of tangent vector or equivalently as the rate of change of normal vector to the graph.

For an implicitly defined surface M = {x ∈ Rd : F (x1, . . . , xd) = 0} the first and second
derivatives f ′(x) and f ′′(x) correspond to the unit normal vectorN(x) and its rate of change∇N(x).
Note since we can write N(x) = ∇F (x)/‖∇F (x)‖ it makes sense to speak of the normal operator
defined on the whole space rather than just the surface. Since the unit normal is vector-valued the rate
of change is a d× d matrix. This matrix gives a linear operator Rd → Rd via matrix multiplication.

Since we cannot move perpendicular to the normal vector without leaving the surface, we must restrict
this linear operator to the (d− 1)-dimensional tangent space TxM to the surface at x, in order to talk
about how the normal changes as we move across the manifold. Put another way, there are different
choices of the function F that give the same surfaceM = {x ∈ Rd : F (x1, . . . , xd) = 0}. For
example 2F and F 2 have the same zero set. Hence the object N(x) = ∇F (x)/‖∇F (x)‖ contains
information about the choice of function as well as the surface. By ignoring the action on the normal
direction we keep only the information about the surface.

The restriction of the operator is called the differential DN(x) or shape operator of the surface at x.
It is useful to think of∇N(x) and DN(x) as linear operators rather than matrices, since the standard
basis on Rd does not naturally give a basis for TxM or matrix form forDN(x). However we can still
talk about the eigenvalues and vectors since they are basis-independent objects. We have m-strong
convexity ofM if and only if λ1, . . . λd−1 ≥ m for the eigenvalues λ1, . . . λd−1 of DN(x).
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Of course eigenvalues of an operator are only defined if the domain and range are the same space.
Hence to talk about eigenvalues of DN(x) : TxM → TxM we must know ∇N(x) transforms
elements of TxM into elements of the same subspace. To see this recall each tangent vector
v ∈ TxM is witnessed by some path γ : (−ε, ε) → M with γ(0) = x and γ′(0) = v. Hence by
the chain rule we have we have∇N(x)v = ∇N(x)γ′(0) = d

dt

∣∣
t=0

N(γ(t)). Let Sd−1 ⊂ Rd be the
(d − 1)-dimensional unit sphere, and write the right-hand-side of the above as Γ′(0) for the path
Γ : (−ε, ε)→ Sd−1 with Γ(0) = N(x) and Γ(t) = N(γ(t)). Note Γ is well-defined since each unit
normal N(γ(t)) is an element of the unit sphere. Thus the right-hand-side is tangent to the sphere
at the point Γ(0) = N(x). Hence we have shown ∇N(x)v ∈ TN(x)Sd−1. But the tangent space to
the sphere at N(x) is just the orthogonal complement of {N(x)} which is also the tangent space
TxM. Hence we have ∇N(x)v ∈ TxM as required. We conclude it makes sense to speak of the
eigenvalues of DN(x) : TxM→ TxM.

One non-obvious fact about the shape operator DN(x) is that it is symmetric. This holds even if the
non-restricted operator∇N(x) fails to be symmetric.

The intuition behind the symmetry is to choose coordinates (or equivalently perform a rotation
and translation) soM is locally represented as the graph {x ∈ Rd : xd = G(x1, . . . , xd−1)} of
a twice differentiable function G with G(x) = 0 and ∇G(x) = ed pointing downwards. Writing
(a; b) = (a1, . . . ar, b1, . . . , bl) we see the normal direction at (x;G(x)) points along (∇G(x); 1).
Hence for j = 1, 2, . . . , d− 1 we have

∇N(0)ej = lim
n→∞

N(ej/n)−N(0)

n
= lim
n→∞

1

n

(
(∇G(ej/n); 1)√
∇G(ej/n)2 + 1

− (0; 1)

)

= lim
n→∞

(∇G(ej/n); 1)− (0; 1)

n
= lim
n→∞

(∇G(ej/n); 0)

n
= (∇2G(0)ej ; 0)

for ∇2G(0) the Hessian matrix of second partial derivatives of G at 0. Hence the the restriction of
∇N(0) to the tangent space is the same as the Hessian, and the shape operator DN(0) is symmetric.

Since the shape operator is in general symmetric, standard linear algebra then says DN(x) has
eigenvectors v1, . . . , vd−1 with eigenvalues λ1, . . . , λd−1 such that each eTi DN(x)ej = λiδij . In
other words the matrix representation is diag(λ1, . . . , λd−1) and we see strong convexity is equivalent
to having vTDN(x)v ≥ m for all v ∈ TxM.

Curvature

Here we give a formal treatment of the notion of curvature of a manifold, as outlined in the previous
subsection. Recall the domain X ⊂ Rd is assumed to be m-strongly convex and the boundary
M = ∂X is a (d− 1)-dimensional C2 manifold. Namely each z ∈M has a neighborhood U in Rd
and C2 function F : U → R with nonzero gradient such thatM∩ U = {x ∈ U : F (x) = 0}. Such
a function is called a coordinate patch at z. Note this definition is slightly different to that in the
literature. For equivalent definitions of C2 manifolds see [38] Theorem 1.41.

Much of the following discussion is standard. However we were unable to find a good reference for
differential geometry of hypersurfaces in Rd. Much of the field instead focuses on properties that are
intrinsic to the manifold itself and not the particular embedding in Rd. First we recall some standard
machinery from differential geometry.

We write N(z) for the unit outwards normal at z ∈ M. For each z ∈ M write TxM = {v ∈ Rd :
v ⊥ N(z)} for the tangent space at z to M. The map φ : M → N between manifolds is said
to be differentiable at z to mean there exists a linear operator Dφ(z) : TxM → Tφ(z)N with the
following property: Given any v ∈ TxM and differentiable path γ : (−ε, ε)→M with γ(0) = z
and γ′(0) = v we have Dφ(z)v = d

dt

∣∣
t=0

φ(γ(t)).

Let Sd−1 ⊂ Rd be the unit sphere and N :M→ Sd−1 the unit outwards normal. Since each point of
M is contained in some coordinate patch F we can represent N locally as N(x) = ∇F (x)

‖∇F (x)‖ . Note
by definition ∇F 6= 0 over U hence the expression is well-defined. Since F is C2 it follows N is
locally continuously differentiable. This is the same as being globally continuously differentiable.
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In the previous subsection we have already shown the differential DN(x) : TxM → TxM is
well-defined. Recall the definition of the curvature.

Definition D1. The linear operator∇N(x) :Rd→Rd restricts to an operatorDN(x) :TxM→TxM.
The curvature mx ofM at x is defined as the smallest eigenvalue of DN(x).

In the previous subsection we gave an example of why DN(x) is symmetric. The formal proof is
contained in Lemma D2.

Lemma D2. For each x ∈M there is a scalar function G : Rd × TxM such that each

DN(x)v =
∇2F (x)

‖∇F (x)‖
v −∇F (x)G(x, v)

Moreover for any w, v ∈ TxM we have wT∇N(x)v = wT
∇2F (x)

‖∇F (x)‖
v.

Proof. By choosing a coordinate patch F at x we can write N(y) = F (y)/‖∇F (y)‖ and so

DN(x)v = lim
t→0

1

t

(
∇F (x+ tv)

‖∇F (x+ tv)‖
− ∇F (x)

‖∇F (x)‖

)
= lim
t→0

1

t

(
∇F (x+ tv)

‖∇F (x+ tv)‖
− ∇F (x+ tv)

‖∇F (x)‖
+
∇F (x+ tv)

‖∇F (x)‖
− ∇F (x)

‖∇F (x)‖

)
= ∇F (x) lim

t→0

1

t

(
1

‖∇F (x+ tv)‖
− 1

‖∇F (x)‖

)
+

1

‖∇F (x)‖
lim
t→0

(
∇F (x+ tv)−∇F (x)

t

)
The second term is ∇2F (x)

‖∇F (x)‖v and the first is ∇F (x) ddt
∣∣
t=0

1
‖∇F (x+tv)‖ . Since ∇F (x) 6= 0 the

derivative is some well-defined scalar function G(x, v). This proves the first part of the claim. For
the second part write

wTDN(x)v =
wT∇2F (x)v

‖∇F (x)‖
− wT∇F (x)G(x, v).

Since w is a tangent vector it is orthogonal to the normal and the second term vanishes.

Proposition 4 of [20] says thatM = ∂X having curvature at least m > 0 at each point is equivalent
to X being m-strongly convex. Since m > 0 all the eigenvalues of ∇N(x) and DN(x) are positive
and we have the next lemma.

Lemma 2. For each z ∈M and unit vector v tangent toM at z we have ‖∇N(z)v‖ ≥ m.

Proof. Since v ∈ TzM we have N(z)v = DN(z)v. The second part of Lemma D2 says DN(z) :
TzM → TzM is a symmetric operator. Hence TzM has an orthonormal basis of eigenvectors
u1, . . . , ud−1 with eigenvalues λ1, . . . , λd−1. Hence we have v =

∑d−1
j=1 αjuj for some αi ∈ R

such that
∑d−1
j=1 α

2
j = 1. It follows DN(z)v =

∑d−1
j=1 αjλjuj and so ‖DN(z)v‖2 =

∑d−1
j=1 α

2
jλ

2
j .

The right-hand-side is minimised for αj = 1 for λj = minj λ
2
j and all other αk = 0. Hence we

have ‖DN(z)v‖2 ≥ minλ2j . Since we assume positive curvature all eigenvalues are positive and so
‖DN(z)v‖ ≥ minj |λj | = minj λj = m as required.

Lemma 3. For each coordinate patch F at z ∈M and each unit vector tangent v toM at z we have
vT∇2F (z)v
‖∇F (z)‖ ≥ m.

Proof. Lemma D2 says vT∇2F (z)v
‖∇F (z)‖ = vTDN(z)v. For uj , λj , αj from the proof of Lemma 2

we have vTDN(z)v =
(∑d−1

j=1 αjuj
)T
DN(z)

∑d−1
j=1 αjuj =

(∑d−1
j=1 αjuj

)T ∑d−1
j=1 αjλjuj =∑d−1

j=1 α
2
jλj since uj are orthonormal. Since we assume positive curvature all λj ≥ 0 and the

right-hand-side is minimised same as the proof of Lemma 2.
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Next we define a counterpart to the curvature. While the curvature lower bounds how quickly the unit
normal changes as we vary the basepoint, the counterpart upper bounds the change.

Lemma 4. There exist constants M, r > 0 such that each z ∈ M has a coordinate patch F :

B(z, r)→ R with ‖∇N(y)‖, ‖∇
2F (y)‖

‖∇F (y)‖ ≤M for all y ∈ B(z, r).

Proof. For each x ∈ M let Fx : Ux → R be a coordinate patch at x. For each x let Vx ⊂ Ux be
a compact neighborhood of x chosen small enough that ∇Fx 6= 0 over Vx. Since Fx is C2 we see
‖∇2Fx(y)‖
‖∇Fx(y)‖ is continuous over Vx hence bounded by some Mx. Likewise the function y 7→ ∇N(y)

that gives the matrix of partial derivatives of ∇Fx(y)
‖∇Fx(y)‖ is continuous. Hence y 7→ ‖∇N(y)‖ is

bounded over Vx by some M ′x.

Since M is compact it is covered by some finite subcollection V ◦x(1), . . . , V
◦
x(n). The Lebesgue

covering theorem, see [15] Theorem 4.3.31, gives r > 0 such that for each x ∈ M the ball
B(x, r) is contained in some V ◦x(i). Hence we can take F as the restriction of Fx(i) and the constant
M = max{Mx(i),M

′
x(i) : i ≤ n}

Remark: The constants M and r in Lemma 4 depend only on the geometry ofM and not on the
manner M is embedded in Rd. To see this recall the operator norms ‖∇N(y)‖, ‖∇2F (y)‖ and
‖∇F (y)‖ are unchanged by translations and rotations. Hence if the constants satisfy the conditions for
one embedding we can transform between embeddings to show they satisfy for all other embeddings.
However it is not obvious how to express M and r in terms of intrinsic properties ofM. For r we
suspect the tubular neighborhood theorem [36] can be used to show a single coordinate patch is
sufficient. However it is difficult to find references for such theorems for embedded C2 manifolds
rather than C∞ manifolds. For M we suspect the coordinate patch F can be selected so that
for N(x) = ∇F (x)/‖∇F (x)‖ we have ∇N(x) coincides with DN(x) on the tangent space and
vanishes on the normal direction, and so M is the largest eigenvalue of the shape operator.

Main Result

Here we prove our main differential geometry result. Our Proposition 1 gives a lower bound for the
change of unit normal, as we vary the basepoint along the boundary surface of a C2 and m-strongly
convex domain.

For a one-dimensional example suppose f : R → R is twice differentiable. That means for any
z ∈ R the derivative has linear approximation f ′(y) = f ′(z) + f ′′(z)(y− z) + o(‖y− z‖). Hence z
has a neighborhood U with for example ‖f ′(y)− f ′(z)‖ ≥ |f

′′(z)|
2 ‖y − z‖ for all y ∈ U . In case f

is m-strongly convex we have moreover ‖f ′(y)− f ′(z)‖ ≥ m
2 ‖y − z‖ for all y, z ∈ R.

Proposition 1 is analogous to the above except (a) the right-hand-side uses the geodesic rather than
norm distance and (b) the coefficient ‖∇N(z)v‖ mentions the direction v from x to y as well as the
derivative∇N(z) of the normal vector. For example consider the graph of a quadratic z = αx2+βy2

for α, β ≥ 0. For perturbations from 0 along the x, y-axis we can bound the change in normal by the
coefficients α, β respectively.

The closest existing result seems to be Vial, 1982 Theorem 1(v) [35] which says ‖N(y)−N(z)‖ ≥
m‖x − y‖ for all y, z ∈ M. This result is superior in that it applies globally rather than in a
neighborhood of z. However the theorem is insufficient here as it does not mention the direction.
This is important because our main proof uses the form d(y, z) ≤ 2

‖∇N(z)v‖‖N(y) − N(z)‖ of
Proposition 1 to upper bound the expression E = ‖∇N(z)v‖d(y, z)2. The factors of ‖∇N(z)v‖
cancel and we get E ≤ 4

‖∇N(z)v‖‖N(y)−N(z)‖2 which is at most 4
m‖N(y)−N(z)‖2 by Lemma

2. This ultimately gives an O
(
L2

m logN
)

bound for pseudo-regret. If we instead try to use the Vial
theorem we only get E ≤ ‖N(z)v‖

m2 ‖N(y)−N(z)‖2 and an O
(
L2

m
m
m logN

)
bound for m the largest

eigenvalue of the shape operator. Hence our new result is needed to get the optimal coefficient.

Lemma 5. Let M be the constant from Lemma 4. For each geodesic γ : [0, d(x, y)]→M from x
to y we have for d = d(x, y) and all t ≤ d the inequalities

(1) ‖γ′′(t)‖ ≤M (2) ‖γ(t)− γ(0)− tγ′(0)‖ ≤ (M/2)t2 (3)
∣∣‖y − x‖ − d∣∣ ≤ (M/2)d2
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Proof. To prove (1) let F be a coordinate patch from Lemma 4 and differentiate F (γ(t)) = 0 twice to
get ∇2F (γ(t))γ′(t) +∇F (γ(t))γ′′(t) = 0 and so ‖∇F (γ(t))γ′′(t)‖ = ‖∇2F (γ(t))γ′(t)‖. Since
γ is a geodesic [29] says γ′′(t) is normal to the surface and the left-hand-side is ‖∇F (γ(t))γ′′(t)‖ =
‖∇F (γ(t))‖‖γ′′(t)‖. Divide to get

‖γ′′(t)‖ =

∥∥∥∥ ∇2F (γ(t))

‖∇F (γ(t))‖
γ′(t)

∥∥∥∥ ≤M‖γ′(t)‖ ≤M
since γ is a unit-speed path. For (2) write

γ(t)− γ(0) =

∫ t

0

γ′(x)dx =

∫ t

0

(
γ′(0) +

∫ s

0

γ′′(s)ds

)
dx = tγ′(0) +

∫ t

0

∫ s

0

γ′′(s)dsdx

=⇒ ‖γ(t)− γ(0)− tγ′(0)‖ ≤
∫ t

0

∫ s

0

‖γ′′(s)‖dsdx ≤M
∫ t

0

∫ s

0

dsdx =
M

2
t2

To get (3) recall x = γ(0) and y = γ(d). Since γ has unit speed the triangle inequality gives∣∣‖y − x‖ − d∣∣ =
∣∣‖γ(d)− γ(0)‖ − d‖γ′(0)‖

∣∣ ≤ ‖γ(d)− γ(0)− dγ′(0)‖ ≤ M

2
d2

where the last inequality uses (2).

Proposition 1. Each z ∈M has a neighborhood U in Rd such that for all y ∈ U ∩M and direction
v from z to y we have

‖N(y)−N(z)‖ ≥ ‖∇N(z)v‖
2

d(y, z)

Proof. Recall the normal unit vector can be expressed N(z) = ∇F (z)
‖∇F (z)‖ for any coordinate patch F

at z. Since F is C2 the normal vector function is differentiable. Hence z has a neighborhood U such
that for all y ∈ U ∩M we have

‖N(y)−N(z)−∇N(z)(y − z)‖ ≤ m

4
‖y − z‖

=⇒ ‖N(y)−N(z)− d∇N(z)v‖ ≤ m

4
‖y − z‖+ ‖∇N(z)((y − z)− dv)‖

for d = d(y, z). Shrink U if necessary to have geodesic diameter less than m/2M2 for the constant
M from Lemma 4. The reverse triangle inequality applied to the above gives∣∣‖N(y)−N(z)‖ − d‖∇N(z)v‖

∣∣ ≤ m

4
‖y − z‖+

∥∥∇N(z)
(
(y − z)− dv

)∥∥
=⇒

∣∣‖N(y)−N(z)‖ − d‖∇N(z)v‖
∣∣ ≤ m

4
d(y, z) +

∥∥∇N(z)‖‖(y − z)− dv
∥∥. (4)

where we have used ‖z − y‖ ≤ d(y, z). Use Lemma 5 to bound the rightmost term as∥∥∇N(z)‖‖(y − z)− dv
∥∥ ≤M‖y − z − dv∥∥ ≤ M2

2
d(y, z)2 ≤ M2

2

m

2M2
d(y, z) =

m

4
d(y, z).

Hence the right-hand-side of (4) is at most
m

2
d(y, z) and we get

‖N(y)−N(z)‖ − ‖∇N(z)v‖d(y, z) ≥ m

2
d(y, z)

=⇒ ‖N(y)−N(z)‖ ≥
(
‖∇N(z)v‖ − m

2

)
d(y, z) ≥ ‖∇N(z)v‖

2
d(y, z).

where the last line uses Lemma 2.

Appendix III: Probability

The important concentration inequality is the following corollary to [28] Theorem 3.5.
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Proposition 2. Suppose X1, X2, . . . ∈ Rd are independent random variables with each E[Xn] = 0
and ‖Xn‖ ≤ R. For each t > 0 we have

P

(∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥ > t

)
≤ 2 exp

(
− t2

2R2
n

)
.

To apply the above we first prove some geometric lemmas.

Lemma P1. For any a, ε ∈ Rd with ‖ε‖ ≤ ‖a‖
2

we have
∥∥∥∥ a+ ε

‖a+ ε‖
− a

‖a‖

∥∥∥∥ ≤ 6
‖ε‖
‖a‖

.

Proof. Write
a+ ε

‖a+ ε‖
=

a

‖a‖
+ a

(
1

‖a+ ε‖
− 1

‖a‖

)
+

ε

‖a+ ε‖
and so∥∥∥∥ a+ ε

‖a+ ε‖
− a

‖a‖

∥∥∥∥ ≤ ‖ε‖
‖a+ ε‖

+ ‖a‖
∣∣∣∣ 1

‖a+ ε‖
− 1

‖a‖

∣∣∣∣
≤ ‖ε‖
‖a‖/2

+ ‖a‖
∣∣∣∣ 1

‖a+ ε‖
− 1

‖a‖

∣∣∣∣ ≤ 2
‖ε‖
‖a‖

+ ‖a‖ ‖ε‖
(‖a‖/2)2

= 6
‖ε‖
‖a‖

where the second line uses convexity of the reciprocal function.

Lemma P2. Suppose n ≥ 16D2/η2‖a‖2 and
∥∥∑n

i=1(ai − a)
∥∥ ≤ n‖a‖/4. The Lazy Gradient

Descent actions xn+1 = ΠX

(
− η√

n

∑n
i=1 ai

)
give each

‖a‖
6
‖N(x∗)−N(xn+1)‖ ≤ D

η
√
n

+
1

n

∥∥∥ n∑
i=1

(ai − a)
∥∥∥. (5)

Proof. First we claim − η√
n

∑n
i=1 ai − xn+1 is normal outwards to X at xn+1. To that end recall

for the Euclidean projection ΠX and any y /∈ X we know y − ΠX(y) is outwards normal to X at
ΠX(y). For y = − η√

n

∑n
i=1 ai we have ΠX(y) = xn+1. Since ‖x‖ ≤ D for all x ∈ X it is enough

to show ‖ η√
n

∑n
i=1 ai‖ > D. To that end write η√

n

∑n
i=1 ai = η√

n

∑n
i=1(ai − a) + η

√
na. Hence

the reverse triangle inequality gives∥∥∥ η√
n

n∑
i=1

ai

∥∥∥ ≥ ∣∣∣‖η√na‖ − ‖ η√
n

n∑
i=1

(ai − a)
∥∥∥∣∣∣ ≥ η√n‖a‖ − η√

n

∥∥∥ n∑
i=1

(ai − a)
∥∥∥

By assumption on
∥∥∑n

i=1(ai − a)
∥∥ the above is at least

η
√
n‖a‖ − η√

n

n‖a‖
4

=

(
η‖a‖ − η ‖a‖

4

)√
n =

3

4
η‖a‖

√
n

By assumption on n we have
√
n ≥ 4D/η‖a‖ and the above is at least 3D. Hence ‖ η√

n

∑n
i=1 ai‖ ≥

3D > D as required.

Since x∗ = argmin{a ·x : x ∈ X} the unit outwards normal at x∗ isN(x∗) = − a
‖a‖ . In the notation

of Lemma P1 take ε = 1
n

∑n
i=1(ai− a) + xn+1

η
√
n

. We claim a+ε
‖a+ε‖ = −N(xn+1). To see this observe

a+ ε = 1
n

∑n
i=1 ai + xn+1

η
√
n

= − 1
η
√
n

(
− η√

n

∑n
i=1 ai − xn+1

)
is normal inwards to X at xn+1 and

so a+ε
‖a+ε‖ = −N(xn+1). By assumption on n and

∥∥∑n
i=1(ai − a)

∥∥ we have

‖ε‖ ≤ 1

n

∥∥∥ n∑
i=1

(ai − a)
∥∥∥+

D

η
√
n
≤ ‖a‖

4
+

D

η
√

16D2/η2‖a‖2
=
‖a‖
4

+
‖a‖
4

=
‖a‖
2
.
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Hence Lemma P1 gives

‖N(x∗)−N(xn+1)‖ ≤ 6
‖ε‖
‖a‖
≤ 6

‖a‖

(
1

n

∥∥∥ n∑
i=1

(ai − a)
∥∥∥+
‖xn+1‖
η
√
n

)

≤ 6

‖a‖

(
1

n

∥∥∥ n∑
i=1

(ai − a)
∥∥∥+

D

η
√
n

)
Multiply both sides by ‖a‖/6 to complete the proof.

Lemma P3. Suppose
∥∥∑N

i=1(ai − a)
∥∥ ≤ N‖a‖/2. For y∗ = argmin

{∑N
i=1 ai · x : x ∈ X

}
we

have

‖a‖
6
‖N(x∗)−N(y∗)‖ ≤ 1

N

∥∥∥ N∑
i=1

(ai − a)
∥∥∥

Proof. Use Lemma P1 with ε = 1
N

∑N
i=1(ai − a) and how − a

‖a‖ and − a+ε
‖a+ε‖ are unit outwards

normals to X at x∗ and y∗ respectively.

Now we combine Proposition 2 with Lemma P3 to get tail bounds for Follow-the-Leader.

Lemma P4. For y∗ = argmin
{∑N

i=1 ai · x : x ∈ X
}

and each t ≤ ‖a‖/2 we have

P

(
‖a‖
6
‖N(x∗)−N(y∗)‖ > t

)
< 2 exp

(
− t2

2R2
N

)
.

Proof. For random variables Xi = ai − a Proposition 2 says P
(∥∥ 1

N

∑N
i=1(ai − a)

∥∥ ≤ t) ≥
1−2 exp

(
− t2

2R2N
)

for any t > 0. Moreover if the event
{∥∥ 1

N

∑N
i=1(ai−a)

∥∥ ≤ t} holds for some

t ≤ ‖a‖2 we have 1
N

∥∥∑N
i=1(ai − a)

∥∥ ≤ ‖a‖2 and so
∥∥∑N

i=1(ai − a)
∥∥ ≤ N ‖a‖2 . Hence by Lemma

P3 the event
{‖a‖

6 ‖N(x∗)−N(y∗)‖ ≤ t
}

also holds. It follows P
(
‖a‖
6 ‖N(x∗)−N(y∗)‖ ≤ t

)
≥

P
(∥∥ 1

N

∑N
i=1(ai − a)

∥∥ ≤ t) ≥ 1−2 exp
(
− t2

2R2N
)

. Take complements to complete the proof.

Now we combine Proposition 2 with Lemma P2 to get tail bounds for Lazy Gradient Descent.

Lemma P5. Suppose n ≥16D2/η2‖a‖2. For the Online Lazy Gradient Descent actions x1, x2, ...
and each t≤ ‖a‖/4 we have

P

(
‖a‖
6
‖N(x∗)−N(xn+1)‖ > D

η
√
n

+ t

)
< 2 exp

(
− t2

2R2
n

)
.

Proof. For random variables Xi = ai − a Proposition 2 says P
(∥∥ 1

n

∑N
i=1(ai − a)

∥∥ ≤ t) ≥
1 − 2 exp

(
− t2

2R2n
)

for any t > 0. Moreover if the event
{∥∥ 1

n

∑n
i=1(ai − a)

∥∥ ≤ t
}

holds for

some t ≤ ‖a‖
4 we have 1

n

∥∥∑n
i=1(ai − a)

∥∥ ≤ ‖a‖
4 and so

∥∥∑n
i=1(ai − a)

∥∥ ≤ n‖a‖2 . Hence by
Lemma P2 the event

{‖a‖
6 ‖N(x∗)−N(xn+1)‖ ≤ D

η
√
n

+ 1
n

∥∥∑n
i=1(ai − a)

∥∥.} also holds. Since{∥∥ 1
n

∑n
i=1(ai − a)

∥∥ ≤ t
}

holds so does
{‖a‖

6 ‖N(x∗) − N(xn+1)‖ ≤ D
η
√
n

+ t
}

. It follows

P
(
‖a‖
6 ‖N(x∗)−N(xn+1)‖ ≤ D

η
√
n

+ t
)
≥ P

(∥∥ 1
n

∑n
i=1(ai − a)

∥∥ ≤ t) ≥ 1 − 2 exp
(
− t2

2R2n
)

.
Take complements to complete the proof.
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Lemmas P4 and P5 give tail bounds for ‖N(x∗)−N(y∗)‖ and ‖N(x∗)−N(xn+1)‖ respectively.
For the main analysis we must use the lemmas to get tail bounds for ‖N(x∗)−N(y∗)‖2 and
‖N(x∗)−N(xn+1)‖2.

Lemma P6. Suppose the random variable Z takes values in [0,W ] and there exist K, k, t0 ≥ 0 such
that for all t ≤ t0 we have P (Z > K + t) < 2e−kt

2

. Then we also have

E[Z2] ≤ 2

(
K

√
π

k
+

1

k

)
+ 2W 2e−kt

2
0

Proof. Let δ ≥ 0 be arbitrary and t=
√
δ −K. Since Z is nonnegative we have {Z > K + t} =

{Z2 > (K + t)2} = {Z2 > δ}. For δ ≤ δ0 = (t0 + K)2 we have t ≤ t0 and so P (Z2 > δ) =

P (Z > K + t) ≤ 2e−kt
2

= 2e−k(
√
δ−K)2 . Hence Lemma 11 gives

E[Z2] ≤
∫ ∞
0

P (Z2 > δ)dδ =

∫ W 2

0

P (Z2 > δ)dδ

=

∫ (t0+K)2

0

P (Z2 > δ)dδ +

∫ W 2

(t0+K)2
P (Z2 > δ)dδ

≤ 2

∫ (t0+K)2

0

min{1, 2e−k(
√
δ−K)2}dδ +

∫ W 2

(t0+K)2
2e−k(

√
δ0−K)2dδ

≤
∫ ∞
0

min{1, 2e−k(
√
δ−K)2}dδ +

∫ W 2

(t0+K)2
2e−kt

2
0dδ

≤
∫ ∞
0

min{1, 2e−k(
√
δ−K)2}dδ + 2W 2e−kt

2
0 . (6)

For the integral write∫ ∞
0

min{1, 2e−k(
√
δ−K)2}dδ =

∫ K2

0

min{1, 2e−k(
√
δ−K)2}dδ +

∫ ∞
K2

min{1, 2e−k(
√
δ−K)2}dδ

≤ K2 + 2

∫ ∞
K2

e−k(
√
δ−K)2dδ.

To simplify the integral write t =
√
δ. Then dt = dδ/2

√
δ and dδ = 2

√
δdt = 2tdt. Hence we get

2

∫ ∞
K2

e−k(
√
δ−K)2dδ = 4

∫ ∞
K

te−k(t−K)2dt = 4

∫ ∞
0

(t+K)e−kt
2

dt = 2

(
K

√
π

k
+

1

k

)
.

where we have used the Gaussian integral formula [24] and integration by parts to compute the
integral. Combine with (6) to complete the proof.

Now we combine Lemmas P5 and P6.

Lemma 7. Suppose n ≥ 16D2/η2‖a‖2. The Online Lazy Gradient Descent actions x1, x2, ... give
each

E‖N(x∗)−N(xn+1)‖2 ≤ 1

n

36

‖a‖2

(√
8πDR

η
+ 4R2

)
+ 8 exp

(
− ‖a‖

2

32R2
n

)

Proof. In the notation of Lemma P6 let

Z =
‖a‖
6
‖N(x∗)−N(xn+1)‖ K =

D

η
√
n

k =
n

2R2
t0 =

‖a‖
4
.
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Since N(x∗), N(xn+1) are unit vectors maxZ ≤ ‖a‖3 = W. Combine Lemmas P5 and P6 and to
bound E[Z2]. The the terms on the right-hand-side of Lemma P6 simplify to

2

k
=

4R2

n

2K

√
π

k
=

2D

η
√
n

√
2πR√
n

=
1

n

√
8πDR

η

2W 2e−kt
2
0 = 2

‖a‖2

9
exp

(
− n

2R2

‖a‖2

16

)
=

2

9
‖a‖2 exp

(
− ‖a‖

2

32R2
n

)
.

To bound E‖N(x∗)−N(xn+1)‖2 multiply the bound for E[Z2] by 36
‖a‖2 .

Similarly combine Lemmas P4 and P6 to get the following.

Lemma 11. For y∗ = argmin
{∑N

i=1 ai · x : x ∈ X
}

. The Online Lazy Gradient Descent actions
give

E‖N(x∗)−N(y∗)‖2 ≤ 144R2

‖a‖2N
+ 8 exp

(
−‖a‖

2

8R2
N

)
.

Proof. In the notation of Lemma P6 let

Z =
‖a‖
6
‖N(y∗)−N(x∗)‖ K = 0 k =

n

2R2
t0 =

‖a‖
2
.

Since N(x∗), N(y∗) are unit vectors maxZ ≤ ‖a‖3 = W. Combine Lemmas P4 and P6 and to bound
E[Z2]. The the terms on the right-hand-side of Lemma P6 simplify to

2

k
=

4R2

N
2K

√
π

k
= 0 2W 2e−kt

2
0 =

2

9
‖a‖2 exp

(
−‖a‖

2

8R2
N

)
.

To bound E‖N(y∗)−N(x∗)‖2 multiply the bound for E[Z2] by 36
‖a‖2 .

Lemma 8. For each neighborhoodU of x∗ in Rd the Online Lazy Gradient Descent actions x1, x2, . . .
give

∑∞
i=1 P (xi /∈U) <∞.

Proof. Lemma P5 says there are K1, k1, δ1 > 0 such that for all δ ≤ δ̃1 we have

P
(
‖N(xn+1)−N(x∗)‖ > K1/

√
n+ δ

)
≤ 2e−k1nδ

2

Proposition 1 and Lemma 2 combine to give

d(xn+1, x
∗) ≤ 2

‖∇N(x∗)v‖
‖N(xn+1)−N(x∗)‖ ≤ 2

m
‖N(xn+1)−N(x∗)‖.

Hence there are K2, k2, δ2 > 0 such that for all δ ≤ δ2 we have

P
(
d(xn+1, x

∗) > K2/
√
n+ δ

)
≤ 2e−k1nδ

2

(7)

Since U is a neighborhood it contains some ball B(x∗, r) with respect to the geodesic distance. Thus
it is enough to show the series

∑∞
i=1 P (d(xi+1 − x∗) > r) is finite. In particular it is enough to

show some tail is finite. To that end let n0 ∈ N be large enough that K2/
√
n0 ≤ 1

2 min{r, δ2}. Plug
δ = 1

2 min{r, δ2} into (7) to get K2/
√
n+ δ ≤ K2/

√
n0 + δ ≤ min{r, δ2} ≤ r. Hence we have

P (d(xn+1, x
∗) > r) ≤ P

(
d(xn+1, x

∗) > K2/
√
n+ δ

)
≤ 2e−k1δ

2n

Finally take the series. Since the terms are decreasing we can bound the series with the integral.
∞∑
i>n0

P (d(xi+1, x
∗) > r) ≤ 2

∞∑
i>n0

e−k1δ
2i ≤ 2

∫ ∞
n0

e−k1δ
2xdx ≤ 2

k2δ2
.
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