Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)
Matthias Poloczek, Jialei Wang, Peter Frazier
We consider Bayesian methods for multi-information source optimization (MISO), in which we seek to optimize an expensive-to-evaluate black-box objective function while also accessing cheaper but biased and noisy approximations ("information sources"). We present a novel algorithm that outperforms the state of the art for this problem by using a Gaussian process covariance kernel better suited to MISO than those used by previous approaches, and an acquisition function based on a one-step optimality analysis supported by efficient parallelization. We also provide a novel technique to guarantee the asymptotic quality of the solution provided by this algorithm. Experimental evaluations demonstrate that this algorithm consistently finds designs of higher value at less cost than previous approaches.