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Supplementary Material

A Provable Performance Guarantees

First note that the misoKG chooses an IS and an x such that the conditional expectation of the
objective value of the recommendation is maximized per unit cost of the query. Let N denote the
number of queries that the policy is allowed to make.

Proposition 1. misoKG achieves an optimal information gain per unit cost (with respect to A) for
N = 1.

The proposition follows immediately by definition of the misoKG factor MKGn(·, ·) in Eq. (1) on
p. 4.

Next we establish an additive bound on the loss of the solution obtained by the algorithm with respect
to the unknown optimum, as the number of queries N →∞. For the sake of convenience, we restate
definitions given in Sect. 3.4. In what follows suppose that µ(`, x)=0 ∀`, x and Σ0 is an at least four
times differentiable Matérn kernel, e.g., the popular squared exponential kernel. Suppose that f is
drawn from the prior, i.e., let f ∼ GP (µ,Σ). Then the sample f(0, ·) from the distribution over
functions is itself twice continuously differentiable with probability one (e.g., see Ghosal and Roy [9,
Theorem 5]). Moreover, let xOPT ∈ argmaxx′∈D f(0, x′) and d = maxx′∈Dminx′′∈A dist(x′, x′′).
That is, d is the maximum distance of any point in the continuous domain D to its closest point in the
discrete set A. Then we have the following bound on the objective value obtained by misoKG.

Theorem 2 (Theorem 1 restated). Let x∗N ∈ A be the point that misoKG recommends in iteration N .
For each p ∈ [0, 1) there is a constant Kp such that with probability p

lim
N→∞

f(0, x∗N ) ≥ f(0, xOPT)−Kp · d.

First observe that if f(0, ·) is twice continuously differentiable, then in particular the extrema
of ∂

∂xi
f(0, ·) over D are bounded. Specifically, since the partial derivatives of GP (µ,Σ) with respect

to xi are also GPs for our choice [27, Sect. 9.4], we can compute for every p ∈ [0, 1) a constant Kp

such that f(0, ·) is Kp-Lipschitz continuous on D with probability at least p. Then there is an x̄ ∈ A
with

dist(x̄, xOPT) ≤ d
and hence

f(0, xOPT)− f(0, x̄) ≤ Kp · d. (3)

We need one more caveat. Recall that x∗N is the recommendation of misoKG after N queries to
information sources.

Theorem 3. As N →∞, lim f(0, x∗N ) ≥ f(0, x̄) a.s.

This completes the proof of Theorem 1, since we already showed that Eq. (3) holds with probability p.

We point out that Frazier, Powell, and Dayanik [8] showed in their seminal work that Theorem 3
holds for the case of a single information source with uniform query cost (Theorem 4 in [8]).

We prove it for the MISO setting that allows multiple information sources that each have query
costs c`(x) varying over the search domain D. In addition, the proof that we present in the following
is simple and short. Also note that Theorem 3 establishes consistency of misoKG for the special case
that D is finite, since then d = 0 holds.

Proof. We will show that the misoKG factor of each pair `, x goes to zero almost surely, as the number
of queries n → ∞. This will imply that the algorithm identifies an optimal design in A, thereby
proving the claim. We define a filtration (Fn), where Fn is the σ-algebra generated by the first n
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queries to information sources, denoted by X = {(`(i), x(i))|1 ≤ i ≤ n}, and the corresponding
observations Y . En := E[·|Fn] is the expectation taken with respect to Fn. Recall that we defined

µ(n)(`, x) = En [f(`, x)]

σ̄nx′(`, x) = Σn((0, x′), (`, x))/ [λ`(x) + Σn((`, x), (`, x))]
1
2 ,

and let

Vn (`, x, `′, x′) = En [f(`, x) · f(`′, x′)]

= Σn((`′, x′), (`, x)) + µ(n)(`, x) · µ(n)(`′, x′)

for ` ∈ [M ]0, x ∈ A, and n ∈ N0.

Lemma 1. Let `, `′ ∈ [M ]0 and x, x′ ∈ D. The limits of the series (µ(n)(`, x))n
and (Vn (`, x, `′, x′))n exist. Denote them by µ(∞)(`, x) and V∞ (`, x, `′, x′) respectively. We
have

lim
n→∞

µ(n)(`, x) = µ(∞)(`, x) (4)

lim
n→∞

Vn (`, x, `′, x′) = V∞ (`, x, `′, x′) (5)

almost surely. If (`′, x′) is sampled infinitely often, then limn→∞ Vn (`, x, `′, x′) = µ(∞)(`, x) ·
µ(∞)(`′, x′) holds almost surely.

Proof. f(`, x) and f(`, x)·f(`′, x′) are integrable random variables for all `, `′ ∈ [M ]0 and x, x′ ∈ D
by choice of f . Proposition 2.7 in [5] states that any sequence of conditional expectations of an
integrable random variable under an increasing filtration is a uniformly integrable martingale. Thus,
both sequences converge almost surely to their respective limit.

If (`′, x′) is sampled infinitely often, then its posterior variance goes to zero,
and En [f(`, x) · f(`′, x′)]→ µ(∞)(`, x) · µ(∞)(`′, x′).

Let ω denote an arbitrary sample path and note that ω determines an observation for each query to an
information source, as n→∞. Then there must be a f(`′, x′) that is observed infinitely often on ω.
Recall the definition of MKGn(`, x) from Eq. (1) and (2):

MKGn(`′, x′) =

En
[
maxx′′∈A{µ(n)(0, x′′) + σ̄nx′′(`

′, x′) · Z} −maxx′′∈A µ
(n)(0, x′′)

∣∣ `(n+1) = `′, x(n+1) = x′
]

c`′(x′)
(6)

where Z is a standard normal random variable and c`′(x′) is a positive constant. We study the
asymptotic behavior of MKGn(`′, x′) for n→∞ as a function of µ(n)(·, ·) and σ̄n· (·, ·).

Lemma 2. Let `′ ∈ [M ]0, x′ ∈ D and suppose that x′ is observed infinitely often at IS `′ on ω.
Then σ̄nx′′(`

′, x′)→ 0 for every x′′ ∈ D and MKGn(`′, x′)→ 0 almost surely, as n→∞.

Proof. Lemma 1 implies that

Σn((`, x), (`′, x′)) = En [f(`, x) · f(`′, x′)]− µ(n)(`, x) · µ(n)(`′, x′)→ 0,

as n→∞. First suppose λ`′(x′) = 0 and that x′ is sampled at IS `′ for the first time in iteration u.
The update rule for the posterior variance gives that Σu+1((`′, x′), (`′, x′)) = Σu((`′, x′), (`′, x′))−
Σu((`′,x′),(`′,x′))2

Σu((`′,x′),(`′,x′)) = 0. Then we have for any (`, x), Eu+1[f(`, x) · f(`′, x′)] = µ(u+1)(`, x) ·
µ(u+1)(`′, x′), and hence Σu+1((`, x), (`′, x′)) = 0 and MKGn(`′, x′) = 0 hold in iteration u + 1
and all subsequent iterations.

Now suppose λ`′(x′) > 0. Then we have in particular

lim
n→∞

σ̄nx′′(`
′, x′) = lim

n→∞
Σn((0, x′′), (`′, x′))/ [λ`′(x

′) + Σn((`′, x′), (`′, x′))]
1
2

= 0
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for all x′′ ∈ A. Note that the denominator is strictly positive since λ`′(x
′) > 0. Recall

that (µ(n)(`′, x′))n and (σ̄nx′′(`
′, x′))n are uniformly integrable (u.i.) families of random variables

that converge a.s. to their respective limits µ(∞)(·, ·) and σ̄∞x′′(`
′, x′) = 0. Thus,

lim
n→∞

MKGn(`′, x′)

=

∫ +∞
−∞ φ(Z) ·maxx′′∈A{µ(∞)(0, x′′) + σ̄∞x′′(`

′, x′) · Z}dZ −maxx′′∈A µ
(n)(0, x′′)

c`′(x′)

= 0,

where we used that (σ̄nx′′(`
′, x′) · Z)n is u.i., since (Z)n is independent of (σ̄nx′′(`

′, x′))n, the sum of
u.i. random variables is u.i., and so is the maximum over a finite collection of u.i. random variables.
Moreover, c`′(x′) is constant.

Recall that misoKG picks (`(n+1), x(n+1)) ∈ argmax`,x MKGn(`, x) in each iteration n.
Since f(`′, x′) is sampled infinitely often (by choice of `′, x′), MKGn(`, x) → 0 holds a.s. for
all ` ∈ [M ]0 and x ∈ A.

Lemma 3. If limn→∞MKGn(`, x)=0 holds for all `, x, then argmaxx∈A µ
(∞)(0, x) =

argmaxx∈A f(0, x) holds a.s.

Proof. Lemma 1 gives that limn→∞Σn((0, x), (0, x)) = Σ∞((0, x), (0, x)) a.s. for all x ∈ A. First
note that a maximizer is known perfectly if the posterior variance Σ∞((0, x), (0, x))=0 for all x ∈ A.
Thus, define X = {x ∈ A | Σ∞((0, x), (0, x)) > 0} and let x̂ ∈ X . Then

σ̄∞x̂ (0, x̂) = Σ∞((0, x̂), (0, x̂))/ [λ0(x̂) + Σ∞((0, x̂), (0, x̂)]
1
2 > 0. (7)

Note that MKG∞(0, x̂) > 0 if there are x1, x2 ∈ A with σ̄∞x1
(0, x̂) 6= σ̄∞x2

(0, x̂). The reason is that
then there is a Z0 such that w.l.o.g. for all Z > Z0, µ(∞)(0, x1) + σ̄∞x1

(0, x̂) · Z > µ(∞)(0, x2) +
σ̄∞x2

(0, x̂) · Z (and vice versa for Z < Z0), resulting in a strictly positive numerator of Eq. (6). Thus,
MKG∞(0, x̂) = 0 implies σ̄∞x′′(0, x̂) = σ̄∞x̂ (0, x̂) for all x′′ ∈ A, which is equivalent to

Σ∞((0, x′′′), (0, x̂))

[λ0(x̂) + Σ∞((0, x̂), (0, x̂))]
1
2

=
Σ∞((0, x′′), (0, x̂))

[λ0(x̂) + Σ∞((0, x̂), (0, x̂))]
1
2

.

for all x′′, x′′′∈A. In particular, Eq. (7) implies λ0(x̂)+Σ∞((0, x̂), (0, x̂))>0 and
hence Σ∞((0, x′′′), (0, x̂))=Σ∞((0, x′′), (0, x̂)). Thus, the covariance matrix of the {f(0, x) |
x ∈ A} is proportional to the all-ones matrix, and hence f(0, x)− µ(∞)(0, x) is a normal random
variable that is constant across all x ∈ A. Therefore, argmaxx∈A µ

(∞)(0, x) = argmaxx∈A f(0, x)
holds.

Thus, a maximizer of f(0, ·) over A is perfectly known (but not necessarily its exact objective
value). We point out that this scenario cannot occur if there is only a single IS, as then `′ = 0
and σ̄∞x′′(`

′, x′) = 0 together imply X = ∅.

B The Model Revisited

B.1 Correlated Model Discrepancies

Next we demonstrate that our approach is flexible and can easily be extended to scenarios where
some of the information sources have correlated model discrepancies. This arises for hyperparameter
tuning if the auxiliary tasks are formed from data that was collected in batches and thus is correlated
over time.

In engineering sciences we witness this if some sources share a common modeling approach, as for
example, if one set of sources for an airfoil modeling problem correspond to different discretizations
of a PDE that models wing flutter, while another set provides various discretizations of another PDE
that modeling airflow. Two information sources that solve the same PDE will be more correlated than
two that solve different PDEs.
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Additionally, experiments conducted in the same location are exposed to the same environmental
conditions or singular events, thus the outputs of these experiments might deviate from the truth by
more than independent measurement errors. Another important factor is humans involved in the
lab work, as typically workers have received the comparable training and may have made similar
experiences during previous joint projects, which influences their actions and decisions.

For example, let P = {P1, . . . , PQ} denote a partition of [M ]0 and define the function k : [M ]0 →
[Q] that gives for each IS its corresponding partition in P . Then we suppose an independent Gaussian
process ε(k(`), x) ∼ GP (µk(`),Σk(`)) for each partition. (Note that in principle we could take this
approach further to arbitrary sets of [M ]0. However, this comes at the expense of a larger number
of hyperparameters that need to be estimated.) Again our approach is to incorporate all Gaussian
processes into a single one with prior distribution f ∼ GP (µ,Σ):1 therefore, for all ` ∈ [M ]0
and x ∈ D we define f(`, x) = f(0, x) + ε(k(`), x) + δ`(x), where f(0, x) = g(x) is the objective
function that we want to optimize. Due to linearity of expectation, we have

µ(`, x) = E [f(0, x) + ε(k(`), x) + δ`(x)]

= E [f(0, x)] + E [ε(k(`), x)] + E [δ`(x)]

= µ0(x),

since E [ε(k(`), x)] = E [δ`(x)] = 0. Recall that the indicator variable 1`,m denotes Kronecker’s
delta. Let `,m ∈ [M ]0 and x, x′ ∈ D, then we define the following composite covariance function Σ:

Σ ((`, x), (m,x′))

= Cov (f(0, x) + ε(k(`), x) + δ`(x), f(0, x′)

+ ε(k(m), x′) + δm(x′))

= Cov(f(0, x), f(0, x′)) + Cov(ε(k(`), x), ε(k(m), x′))

+ Cov(δ`(x), δm(x′))

= Σ0(x, x′) + 1k(`),k(m)·Σk(`)(x, x
′) + 1`,m·Σ`(x, x′).

B.2 Estimation of Hyperparameters

In this section we detail how to set the hyperparameters via maximum a posteriori (MAP) estimation
and propose a specific prior that has proven its value in our application and thus is of interest in its
own right.

In typical MISO scenarios little data is available, that is why we suggest MAP estimates that in our
experience are more robust than maximum likelihood estimates (MLE) under these circumstances.
However, we wish to point out that we observed essentially the same performances of the algorithms
when conducting the Rosenbrock and Assemble-to-Order benchmarks with maximum likelihood
estimates for the hyperparameters.

In what follows we use the notation introduced in Sect. 3.1. One would suppose that the functions µ0(·)
and Σ`(·, ·) with ` ∈ [M ]0 belong to some parameterized class: for example, one might set µ0(·) and
each λ`(·) to constants, and suppose that Σ` each belong to the class of Matérn covariance kernels
(cp. Sect. 4 for the choices used in the experimental evaluation). The hyperparameters are fit from
data using maximum a posteriori (MAP) estimation; note that this approach ensures that covariances
between information sources and the objective function are inferred from data.

For a Matérn kernel we have to estimate d+ 1 hyperparameters for each information source (see next
subsection): d length scales and the signal variance. We suppose a normal prior N

(
µ`,i, σ

2
`,i

)
for

hyperparameter θ`,i with 1 ≤ i ≤ d+ 1 and ` ∈ [M ]0. Let D ∈ D be a set of points, for example
chosen via a Latin Hypercube design, and evaluate every information source at all points in D. We
estimate the hyperparameters for f(0, ·) and the δ` for ` ∈ [M ], using the “observations” ∆` =
{y(`, x) − y(0, x) | x ∈ D} for the δ`. y(`, x) is the observation including noise for design x at
IS `. The prior mean of the signal variance parameter of IS 0 is set to the variance of the observations
at IS 0. The mean for the signal variance of IS s with ` ∈ [M ] is obtained analogously using the
“observations” in ∆s. If there is an estimate of the average observational noise variance then we

1For simplicity we reuse the notation from the first model to denote their pendants in this model.
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subtract it from the respective observations, exploiting the assumption that observational noise is
independent. Regarding the means of the priors for length scales, we found it useful to set each
prior mean to the length of the interval that the corresponding parameter is optimized over. For each
hyperparameters θ`,i, we set the variance of the prior to σ2

`,i = (
µ`,i

2 )2, where µ`,i is the mean of the
prior.

B.3 How to Express Beliefs on Fidelities of Information Sources

In many applications one has beliefs about the relative accuracies of information sources. One
approach to explicitly encode these is to introduce a new coefficient α` for each Σ` that typically
would be fitted from data along with the other hyperparameters. But we may also set it at the
discretion of a domain expert, which is particularly useful if none of the information sources is an
unbiased estimator and we rely on regression to estimate the true objective. In case of the squared
exponential kernel this coefficient is sometimes part of the formulation and referred to as “signal
variance” (e.g., see [27, p. 19]). For the sake of completeness, we detail the effect for our model of
uncorrelated information sources stated in Sect. 3.1. Recall that we suppose f ∼ GP (µ,Σ) with a
mean function µ and covariance kernel Σ, and observe that the introduction of the new coefficient α`
does not affect µ (`, x). But it changes Σ ((`, x), (m,x′)) to

Σ ((`, x), (m,x′)) = Σ0(x, x′) + 1`,m · α` · Σ`(x, x′).

We observe that setting α` to a larger value results in a bigger uncertainty. The gist is that then
samples from such an information source have less influence in the Gaussian process regression (e.g.,
see Eq. (A.6) on pp. 200 in [27]). It is instructive to consider the case that we observe a design x
at a noiseless and deterministic information source: then its observed output coincides with f(`, x)
(with zero variance). Our estimate f(0, x) for g(x), however, is a Gaussian random variable whose
variance depends (in particular) on the uncertainty of the above information source as encoded in α`,
since λ`(x) = 0 holds.

C Limited Information Gain in Common Multi-Fidelity Models

In this section we show that the information that can be gained from sampling information sources of
lower fidelities is limited for a common family of multi-fidelity models, used in [16, 14, 6, 20, 19].
They suppose that the IS form a strict hierarchy, where IS 1 has lowest and IS M has highest fidelity,
and denote the internal value of IS ` at x by f̂(`, x).

These works share the following two modeling assumptions:

1. Let f̂(`, x) = ρ`−1 · f̂(`− 1, x) + δ̂`(x), where ρ` with ` ∈ [M ] are known constants (e.g.,
estimated from data).

2. δ̂` and δ̂`′ are pairwise independent Gaussian processes.

Kennedy and O’Hagan [16] state that the following “Markov property” holds for their model:
Cov

(
f̂(`, x), f̂(`− 1, x′) | f̂(`− 1, x)

)
= 0 for all x 6= x′. It establishes that one cannot learn

about f̂(`, x) by observing any f̂(` − 1, x′) with x′ 6= x, given that f̂(` − 1, x) is already known.
We show that a slightly more general statement holds whenever the two above assumptions are met.

Theorem 4. Let f̂(`, x) = ρ`−1 · f̂(`− 1, x) + δ̂`(x), where ρ` with ` ∈ [M ] are known constants,
and δ`, δ`′ are pairwise independent Gaussian processes for all ` 6= `′. If ` > `′ > `′′, then

Cov
(
f̂(`, x), f̂(`′′, x′) | f̂(`′, x)

)
= 0 (8)

holds for all x 6= x′.
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Proof. Expanding the covariance and f̂(`, x) gives

Cov
(
f̂(`, x), f̂(`′′, x′) | f̂(`′, x)

)
= Cov

f̂(`′, x) ·
`−1∏
j=`′

ρj + δ̂`(x) +

`−1∑
k=`′+1

δ̂k(x) ·
`−1∏
j=k

ρj , f̂(`′′, x′) | f̂(`′, x)


= Cov

f̂(`′, x) ·
`−1∏
j=`′

ρj , f̂(`′′, x′) | f̂(`′, x)

+ Cov
(
δ̂`(x), f̂(`′′, x′) | f̂(`′, x)

)

+

`−1∑
k=`′+1

Cov

δ̂k(x) ·
`−1∏
j=k

ρj , f̂(`′′, x′) | f̂(`′, x)



To see that the first summand is zero, we rewrite the covariance using Cov(X,Y ) = E[X · Y ] −
E[X]E[Y ] (since f̂(`, x), f̂(`′′, x′) are real-valued random variables with finite variance) and utilize
that

E
[
f̂(`′, x) · f̂(`′′, x′) | f̂(`′, x)

]
= E

[
f̂(`′, x) | f̂(`′, x)

]
· E
[
f̂(`′′, x′) | f̂(`′, x)

]
holds.

For the second summand, again observe that all involved random variables are real-valued and
have finite variance. Further, E

[
δ̂`(x) | f̂(`′, x)

]
= E

[
δ̂`(x)

]
, since δ̂` is independent of δ̂k for

all k < ` and f̂(k, x) is a linear combination of δ̂1, . . . , δ̂k by definition. Let p(η) be the conditional
density of δ̂`(x) at η given f̂(`′, x) and q(ν) be the density of f̂(`′′, x) at ν conditioned on f̂(`′, x).
Since δ̂`(x) and f̂(`′′, x) are independent given f̂(`′, x), their joint conditional density at (η, ν)
equals p(η) · q(ν), therefore

E
[
δ̂`(x) · f̂(`′′, x′) | f̂(`′, x)

]
=

∫ ∫
η · ν p(η)q(ν) dηdν

=

∫
η p(η) dη ·

∫
ν q(ν) dν

= E
[
δ̂`(x)

]
· E
[
f̂(`′′, x′) | f̂(`′, x)

]
,

The remaining summands are zero by a similar argument, thereby proving the claim.

Note that the models proposed in Sect. 3.1 and Sect. B do not have this Markov property. Therefore,
misoKG will be able to learn about f(`, x) from additional queries to IS `′′. We regard this an
important advantage in the context of multiple information source optimization, where information
sources may have complementary strengths.

D Extensions of the misoKG Algorithm

In this section we discuss extensions of the misoKG algorithm proposed in Sect. 3.2. We begin by
discussing popular choices for the discretizations involved in the computation of misoKG. Then we
show how the parallelization in Sect. 3.2 can be used to speed up gradient-based optimization of the
acquisition function, e.g., used in [28, 25, 37]. We also extend this technique to the MISO setting.
Finally, we show how a novel approach in [41] can be used to obtain a discretization-free formulation
of misoKG.

Varying Discrete Sets in the Inner and Outer Maximization Problem. For the sake of sim-
plicity, we employed only a single discretization A of the search domain D in Sect. 3.2. In
practice, however, it is often advantageous to choose different discrete sets for the inner maxi-
mization problem En

[
maxx′∈Ainner{µ(n)(0, x′) + σ̄nx′(`, x) · Z}

∣∣ `(n+1) = `, x(n+1) = x
]

and the
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outer maximization problem argmax`∈[M ]0,x∈Aouter
MKGn(`, x). A common approach is to pick

new sets in each iteration n, for example drawn from the posterior on the location of the global
optimizer: specifically, we draw m samples hi with 1 ≤ i ≤ m from an approximate posterior
on f(0, ·) and then locate a global minimum zi of each hi using a gradient-based optimizer. Then
we set An := {z1, . . . , zm} in iteration n (for more details, see Sect. 2.1 in Hernández-Lobato et al.
[12] and Sect. 3.2 in Shah and Ghahramani [29]).

Another popular approach is to choose the discrete set as a grid of points with highest value under a
weighted expected improvement criterion (e.g., see [11, 34]).

Parallelization of Gradient-based Optimization of the misoKG Factor. In practice it can be
advantageous to compute the gradient of the acquisition function with respect to x and then use a
gradient-based optimizer to find the best x. This approach was proposed by Scott et al. [28] and
later used in [25, 37]. All these articles consider a restricted scenario of a single information source
without notion of costs.

We show how the parallelization in Sect. 3.2 can be used to speed up computations of their ap-
proaches. Moreover, we generalize the gradient-based optimization of the acquisition function to
the MISO setting. Suppose that the functions c`(x) and λ`(x) are differentiable. For example, this
is the case if they are estimated from data via Gaussian process regression with a constant mean
function and a suitable, sufficiently smooth kernel [27, Sect. 9.4]. Now we use a result of [28]
that ∂

∂xEn [maxj{aj+bjZ} −maxj aj ] =
∑
h(− ∂

∂xbjh+1
+ ∂
∂xbjh)φ(−|djh |), where φ is the nor-

mal pdf. Note that the computation of ∂
∂xbj follows the computation of bj in [8] (see [28, Sect. 5.2]

for details), and hence can be parallelized analogously.

Therefore, we are able to compute ∂
∂xMKGn(`, x) in parallel for each IS ` separately and then use a

gradient-based optimizer to obtain a design x(n+1)
` with maximum value of information for each `.

Note that multimodality of argmax MKGn(`, x) is addressed by multiple restarts of the optimizer,
e.g., starting from the points of a Latin hypercube design. Then the next sample pair (`(n+1), x(n+1))
is obtained by comparing the best designs over all information sources and picking one with maximum
misoKG factor.

A Discretization-Free Formulation of misoKG. Recently, Wu, Poloczek, Wilson, and Frazier [41]
proposed a novel technique to avoid discretization in the inner maximization problem based on
an envelope theorem [22]. If combined with the multi-start gradient-based approach for the outer
maximization problem that we have described above, discretization can be avoided all together
in the misoKG algorithm. We point out that the application of that technique is orthogonal to the
contributions of this article.

E A Description of the MISO Benchmark Algorithms

The first benchmark method, MTBO+, is an improved version of Multi-Task Bayesian Optimization
(MTBO) proposed by Swersky et al. [34]. It uses a cost-sensitive version of Entropy Search to select
the next sample and information source: supposing a distribution over the location of the optima of
the objective function, it maximizes in each iteration the reduction in differential entropy per query
cost.

The algorithm requires a discretization A of D. Let P (x) be the probability that the opti-
mum of g is at x∈A conditioned on our previous observations, the hyperparameters, and A,
and let H[P (x)] be the differential entropy of the corresponding distribution. Moreover, de-
note by H[P y` (x)] the expected entropy of the distribution if we had sampled x at IS ` and
observed y. Then the cost-sensitive formulation of Entropy Search proposed in [34] is given
by
∫ ∫

(H[P (x)]−H[P y` (x)]) p(y | ~f)p(~f |x, `)/c`(x) dydf , where p(~f |x, `) is the probability
that the points in A take the values ~f conditioned on the hyperparameters and past observations,
and p(y | ~f) is the probability of observing y when querying x at IS `.

MTBO combines this acquisition function with a “multi-task” Gaussian process model. Their kernel is
given by the tensor productKt⊗Kx, whereKt (resp., Kx) denotes the covariance matrix of the tasks
(resp., of the points), and hence is capable of exploiting correlations. Following a recommendation of
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Figure 3: Evaluation of misoKG, MF-GP-UCB, GP-UCB, and Random on (l) the assemble-to-order
benchmark, (m) the MISO Rosenbrock of [18], and (r) the alternative MISO Rosenbrock benchmark.

Snoek 2016, our implementation MTBO+ uses an improved formulation of the acquisition function
given by Hernández-Lobato et al. [12], Snoek and et al. [31], but otherwise is identical to MTBO; in
particular, it uses the statistical model of Swersky et al. [34].

The other algorithm, misoEI of [18], was developed to solve MISO problems that involve model
discrepancy and therefore is a good competing method to compare with.

It maintains a separate Gaussian process for each information source: to combine this knowledge, the
corresponding posterior distributions are fused for each design via Winkler’s method (1981) into a
single intermediate surrogate, which is a normally distributed random variable. Then Lam et al. adapt
the Expected Improvement (EI) acquisition function to select the design which is to be sampled next:
for the sake of simplicity, assume that observations are noiseless and that y∗ is the objective value of
a best sampled design. If Yx denotes a Gaussian random variable with the posterior distribution of
the objective value for design x, then E[max{Yx − y∗, 0}] is the expected improvement for x, and
the EI acquisition function selects an x that maximizes this expectation. Based on this decision, the
information source to invoke is chosen by a heuristic that aims at maximizing the EI per unit cost.

F Comparison to MF-GP-UCB, GP-UCB, and Random

We compare misoKG to the multi-fidelity method MF-GP-UCB of Kandasamy et al. [15] and to the
single-fidelity methods GP-UCB of Srinivas et al. [33] and Random that picks points randomly. misoKG
and MF-GP-UCB received the same number of initial samples from each IS; GP-UCB and Random
obtain the same number of samples from IS 0 as misoKG. Fig. 3 summarizes the performances. We
see that misoKG clearly outperforms the other algorithms on all benchmarks, leveraging cheap IS
with great success. MF-GP-UCB on the other hand is not able to benefit from cheap approximations;
it performs slightly worse than the single-fidelity methods, which suggests that the bias misleads
the algorithm. This demonstrates that the performance of multi-fidelity methods degrades in the
presence of model discrepancy. GP-UCB and Random only query the expensive IS 0 and hence cannot
be competitive.

G Description of the Assemble-to-Order Benchmark

In the assemble-to-order (ATO) benchmark, a reinforcement learning problem from a business
application, we are managing the inventory of a company that manufactures m products. Each
product is made from a selection from n items, where we distinguish between key items and non-key
items: a product can only be sold if all its key items are in stock. Non-key items are optional
and increase the value. There is a target level for each item: the system automatically sends a
replenishment order if the level drops below the target. The requested item is delivered after a random
period. Since items in the inventory inflict holding cost, the goal is to find a target level vector that
maximizes the expected profit per day (cp. Hong and Nelson [13] for details). The setting of Hong and
Nelson supposes m=5 different products assembled from a subset of n=8 items, asking to optimize
a 8-dimensional target vector b ∈ [0, 20]8. We set up three information sources: IS 0 and IS 2 use the
simulator of Xie et al. [42], whereas the cheapest source IS 1 invokes the implementation of Hong
and Nelson. We assume that IS 0 models the truth. The IS differ in the number of replications: more
replications increase the precision of the estimate but also the computational cost. IS 0 that models
the truth has 500 replications, a noise variance of 0.056 and a cost of 17.1. IS 1 is the cheapest

19



IS with 10 replications, a noise of 2.944, and cost 0.5. IS 2 has 100 replications, noise 0.332, and
cost 3.9. The observational noise and query cost were estimated from data, supposing for the sake of
simplicity that both functions are constant over the domain.

The two simulators differ subtly in the model of the inventory system. However, the effect in estimated
objective value is significant: on average the outputs of both simulators at the same target vector differ
by about 5% of the score of the global optimum, which is about 120, whereas the largest observed
bias out of 1000 random samples was 31.8. Thus, we are witnessing a significant model discrepancy.
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