Local Aggregative Games

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews Supplemental


Vikas Garg, Tommi Jaakkola


Aggregative games provide a rich abstraction to model strategic multi-agent interactions. We focus on learning local aggregative games, where the payoff of each player is a function of its own action and the aggregate behavior of its neighbors in a connected digraph. We show the existence of a pure strategy epsilon-Nash equilibrium in such games when the payoff functions are convex or sub-modular. We prove an information theoretic lower bound, in a value oracle model, on approximating the structure of the digraph with non-negative monotone sub-modular cost functions on the edge set cardinality. We also introduce gamma-aggregative games that generalize local aggregative games, and admit epsilon-Nash equilibrium that are stable with respect to small changes in some specified graph property. Moreover, we provide estimation algorithms for the game theoretic model that can meaningfully recover the underlying structure and payoff functions from real voting data.