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Aggregative games provide a rich abstraction to model strategic multi-agent interactions. We introduce
local aggregative games, where the payoff of each player is a function of its own action and the
aggregate behavior of its neighbors in a connected digraph. We show the existence of a pure strategy
ε-Nash equilibrium in such games when the payoff functions are convex or sub-modular. We prove
an information theoretic lower bound, in a value oracle model, on approximating the structure of the
digraph with non-negative monotone sub-modular cost functions on the edge set cardinality. We also
define a new notion of structural stability, and introduce γ-aggregative games that generalize local
aggregative games and admit ε-Nash equilibrium that is stable with respect to small changes in some
specified graph property. Moreover, we provide algorithms for our models that can meaningfully
estimate the game structure and the parameters of the aggregator function from real voting data.

1 Introduction

Structured prediction methods have been remarkably successful in learning mappings between input
observations and output configurations [1; 2; 3]. The central guiding formulation involves learning a
scoring function that recovers the configuration as the highest scoring assignment. In contrast, in
a game theoretic setting, myopic strategic interactions among players lead to a Nash equilibrium
or locally optimal configuration rather than highest scoring global configuration. Learning games
therefore involves, at best, enforcement of local consistency constraints as recently advocated [4].

[4] introduced the notion of contextual potential games, and proposed a dual decomposition algorithm
for learning these games from a set of pure strategy Nash equilibria. However, since their setting was
restricted to learning undirected tree structured potential games, it cannot handle (a) asymmetries in
the strategic interactions, and (b) higher order interactions. Moreover, a wide class of strategic games
(e.g. anonymous games [5]) do not admit a potential function and thus locally optimal configurations
do not coincide with pure strategy Nash equilibria. In such games, the existence of only (approximate)
mixed strategy equilibria is guaranteed [6].

In this work, we focus on learning local aggregative games to address some of these issues. In an
aggregative game [7; 8; 9], every player gets a payoff that depends only on its own strategy and the
aggregate of all the other players’ strategies. Aggregative games and their generalizations form a very
rich class of strategic games that subsumes Cournot oligopoly, public goods, anonymous, mean field,
and cost and surplus sharing games [10; 11; 12; 13]. In a local aggregative game, a player’s payoff is
a function of its own strategy and the aggregate strategy of its neighbors (i.e. only a subset of other
players). We do not assume that the interactions are symmetric or confined to a tree structure, and
therefore the game structure could, in general, be a spanning digraph, possibly with cycles.

We consider local aggregative games where each player’s payoff is a convex or submodular Lipschitz
function of the aggregate of its neighbors. We prove sufficient conditions under which such games
admit some pure strategy ε-Nash equilibrium. We then prove an information theoretic lower bound
that for a specified ε, approximating a game structure that minimizes a non-negative monotone
submodular cost objective on the cardinality of the edge set may require exponentially many queries
under a zero-order or value oracle model. Our result generalizes the approximability of the submodular
minimum spanning tree problem to degree constrained spanning digraphs [14]. We argue that this
lower bound might be averted with a dataset of multiple ε-Nash equilibrium configurations sampled
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from the local aggregative game. We also introduce γ-aggregative games that generalize local
aggregative games to accommodate the (relatively weaker) effect of players that are not neighbors.
These games are shown to have a desirable stability property that makes their ε-Nash equilibria robust
to small fluctuations in the aggregator input. We formulate learning these games as optimization
problems that can be efficiently solved via branch and bound, outer approximation decomposition, or
extended cutting plane methods [17; 18]. The information theoretic hardness results do not apply to
our algorithms since they have access to the (sub)gradients as well, unlike the value oracle model
where only the function values may be queried. Our experiments strongly corroborate the efficacy of
the local aggregative and γ-aggregative games in estimating the game structure on two real voting
datasets, namely, the US Supreme Court Rulings and the Congressional Votes.

2 Setting

We consider an n-player game where each player i ∈ [n] , {1, 2, . . . , n} plays a strategy (or action)
from a finite set Ai. For any strategy profile a, ai denotes the strategy of the ith player, and a−i the
strategies of the other players. We are interested in local aggregative games that have the property that
the payoff of each player i depends only on its own action and the aggregate action of its neighbors
NG(i) = {j ∈ V (G) : (j, i) ∈ E(G)} in a connected digraph G = (V,E), where |V | = n. Since,
the graph is directed, the neighbors need not be symmetric, i.e., (j, i) ∈ E does not imply (i, j) ∈ E.

For any strategy profile a, we will denote the strategy vector of neighbors of player i by aNG(i). We
assume that player i has a payoff function of the form ui(ai, fG(a, i)), where fG(a, i) , f(aNG(i))
is a local aggregator function, and ui is convex and Lipschitz in the aggregate fG(a, i) for all ai ∈ Ai.
Since fG(a, i) may take only finitely many values, we will assume interpolation between these values
such that they form a convex set. We can define the Lipschitz constant of G as

δ(G) , max
i,ai,a′−i,a

′′
−i

{ui(ai, fG(a′, i))− ui(ai, fG(a′′, i))}, (1)

where the vectors a′−i and a′′−i differ in exactly one coordinate. Clearly, the payoff of any player in
the network does not change by more than δ(G) when one of the neighbors changes its strategy. We
can now talk about a class of aggregative games characterized by the Lipschitz constant:

L(∆, n) = {G : V (G) = n, δ(G) ≤ ∆}.
A strategy profile a = (ai, a−i) is said to be a pure strategy ε-Nash equilibrium (ε-PSNE) if no player
can improve its payoff by more than ε by unilaterally switching its strategy. In other words, any
player i cannot gain more than ε by playing an alternative strategy a′i if the other players continue
to play a−i. More generally, instead of playing deterministic actions in response to the actions of
others, each player can randomize its actions. Then, the distributions over players’ actions constitute
a mixed strategy ε-Nash equilibrium if any unilateral deviation could improve the expected payoff
by at most ε. We will prove the existence of ε-PSNE in our setting. We will assume a training set
S = {a1, a2, . . . , aM}, where each ai is an ε-PSNE sampled from our game. Our objective is to
recover the game digraph G and the payoff functions ui, i ∈ [n] from the set S.

The rest of the paper is organized as follows. We first establish some important theoretical parapher-
nalia on the local aggregative games in Section 3. In Section 4, we introduce γ-aggregative games
and show that γ-aggregators are structurally stable. We formulate the learning problem in Section 5,
and describe our experimental set up and results in Section 6. We state the theoretical results in the
main text, and provide the detailed proofs in the Supplementary (Section 7) for improved readability.

3 Theoretical foundations

Any finite game is guaranteed to admit a mixed strategy ε-equilibrium due to a seminal result by
Nash [6]. However, general games may not have any ε-PSNE (for small ε). We first prove a sufficient
condition for the existence of ε-PSNE in local aggregative games with small Lipschitz constant. A
similar result holds when the payoff functions ui(·) are non-negative monotone submodular and
Lipschitz (see the supplementary material for details).

Theorem 1. Any local aggregative game on a connected digraph G, where G ∈ L(∆, n) and
max
i
|Ai| ≤ m, admits a 10∆

√
ln(8mn)-PSNE.
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Proof. (Sketch.) The main idea behind the proof is to sample a random strategy profile from a mixed
strategy Nash equilibrium of the game, and show that with high probability the sampled profile
corresponds to an ε-PSNE when the Lipschitz constant is small. The proof is based on a novel
application of the Talagrand’s concentration inequality.

Theorem 1 implies the minimum degree d (which depends on number of players n, the local
aggregator function A, Lipschitz constant ∆, and ε) of the game structure that ensures the existence
of at least one ε-PSNE. One example is the following local generalization of binary summarization
games [8]. Each player i plays ai ∈ {0, 1} and has access to an averaging aggregator that computes
the fraction of its neighbors playing action 1. Then, the Lipschitz constant of G is 1/k, where k is the
minimum degree the underlying game digraph. Then, an ε-PSNE is guaranteed for k = Ω(

√
lnn/ε).

In other words, k needs to grow slowly (i.e., only sub-logarithmically) in the number of players n.

An important follow-up question is to determine the complexity of recovering the underlying game
structure in a local aggregative game with an ε-PSNE. We will answer this question in a combinatorial
setting with non-negative monotone submodular cost functions on the edge set cardinality. Specifically,
we consider the following problem. Given a connected digraph G(V,E), a degree parameter d, and
a submodular cost function h : 2E → R+ that is normalized (i.e. h(∅) = 0) and monotone (i.e.
h(S) ≤ h(T ) for all S ⊆ T ∈ 2E), we would like to find a spanning directed subgraph1 Gs of G
such that f(Gs) is minimized, the in-degree of each player is at least d, and Gs admits some ε-Nash
equilibrium when players play to maximize their individual payoffs. We first establish a technical
lemma that provides tight lower and upper bounds on the probability that a directed random graph is
disconnected, and thus extends a similar result for Erdős-Rényi random graphs [25] to the directed
setting. The lemma will be invoked while proving a bound for the recovery problem, and might be of
independent interest beyond this work.

Lemma 2. Consider a directed random graph DG(n, p) where p ∈ (0, 1) is the probability of
choosing any directed edge independently of others. Define q = 1− p. Let Pn be the probability that
DG is connected. Then, the probability thatDG is disconnected is 1−PN = nq2(n−1) +O

(
n2q3n

)
.

We will now prove an information theoretic lower bound for the recovery problem under the value
oracle model [14]. A problem with an information theoretic lower bound of β has the property that
any randomized algorithm that approximates the optimum to within a factor β with high probability
needs to make superpolynomial number of queries under the specified oracle model. In the value
oracle model, each query Q corresponds to obtaining the cost/value of any candidate set by issuing
Q to the value oracle (which acts as a black-box). We invoke the Yao’s minimax principle [28],
which states the relation between distributional complexity and randomized complexity. Using Yao’s
principle, the performance of randomized algorithms can be lower bounded by proving that no
deterministic algorithm can perform well on an appropriately defined distribution of hard inputs.

Theorem 3. Let ε > 0, and α, δ ∈ (0, 1). Let n be the number of players in a local aggregative
game, where each player i ∈ [n] is provided with some convex ∆-Lipschitz function ui and an
aggregator A. Let Dn , Dn(∆, ε, A, (ui)i∈[n]) be the sufficient in-degree (number of incoming
edges) of each player such that the game admits some ε-PSNE when the players play to maximize
their individual payoffs ui according to the local information provided by the aggregator A. Assume
any non-negative monotone submodular cost function on the edge set cardinality. Then for any
d ≥ max{Dn, n

α lnn}/(1− α), any randomized algorithm that approximates the game structure to
a factor n1−α/(1 + δ)d requires exponentially many queries under the value oracle model.

Proof. (Sketch.) The main idea is to construct a digraph that has exponentially many spanning
directed subgraphs, and define two carefully designed submodular cost functions over the edges of
the digraph, one of which is deterministic in query size while the other depends on a distribution.
We make it hard for the deterministic algorithm to tell one cost function from the other. This can be
accomplished by ensuring two conditions: (a) these cost functions map to the same value on almost
all the queries, and (b) the discrepancy in the optimum value of the functions (on the optimum query)
is massive. The proof invokes Lemma 2, exploits the degree constraint for ε-PSNE, argues about the
optimal query size, and appeals to the Yao’s minimax principle.

1A spanning directed graph spans all the vertices, and has the property that the (multi)graph obtained by
replacing the directed edges with undirected edges is connected.
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Theorem 3 might sound pessimistic from a practical perspective, however, a closer look reveals why
the query complexity turned out to be prohibitive. The proof hinged on the fact that all spanning
subgraphs with same edge cardinality that satisfied the sufficiency condition for existence of any
ε-PSNE were equally good with respect to our deterministic submodular function, and we created
an instance with exponentially such spanning subgraphs. However, we might be able to circumvent
Theorem 3 by breaking the symmetry, e.g., by using data that specifies multiple distinct ε-Nash
equilibria. Then, since the digraph instance would be required to satisfy these equilibria, fooling
the deterministic algorithm would be more difficult. Thus data could, in principle, help us avoid the
complexity result of Theorem 3. We will formulate optimization problems that would enforce margin
separability on the equilibrium profiles, which will further limit the number of potential digraphs and
thus facilitate learning the aggregative game. Moreover, the hardness result does not apply to our
estimation algorithms that will have access to the (sub)gradients in addition to the function values.

4 γ-Aggregative Games

We now describe a generalization of the local aggregative games, which we call the γ-aggregative
games. The main idea behind these games is that a player i ∈ [n] may, often, be influenced not only
by the aggregate behavior of its neighbors, but also to a lesser extent on the aggregate behavior of
the other players, whose influence on the payoff of i decreases with increase in their distance to i.
Let dG(i, j) be the number of intermediate nodes on a shortest path from j to i in the underlying
digraph G = (V,E). That is, dG(i, j) = 0 if (j, i) ∈ E, and 1 + mink∈V \{i,j} dG(i, k) + dG(k, j)

otherwise. Let WG , maxi,j∈V dG(i, j) be the width of G. For any strategy profile a ∈ {0, 1}n
and t ∈ {0, 1, . . . ,WG}, let ItG(i) = {j : dG(i, j) = t} be the set of nodes that have exactly t
intermediaries on a shortest path to i, and let aItG(i) be a strategy profile of the nodes in this set. We
define aggregator functions f tG(a, i) , f(aItG(i)) that return the aggregate at level t with respect to
player i. Let γ ∈ (0, 1) be a discount rate. Define the γ-aggregator function

gG(a, γ, `, i) ,
∑̀
t=0

γtf tG(a, i)/
∑̀
t=0

γt,

which discounts the aggregates based on the distance ` ∈ {0, 1, . . . ,WG} to i. We assume that player
i ∈ [n] has a payoff function of the form ui(ai, ·), which is convex and η-Lipschitz in its second
argument for each fixed ai. Finally, we define the Lipschitz constant of the γ-aggregative game as

δγ(G) , max
i,ai,a′−i,a

′′
−i

{ui(ai, gG(a′, γ,WG, i))− ui(ai, gG(a′′, γ,WG, i))},

where the vectors a′−i and a′′−i differ in exactly one coordinate.

The main criticism of the concept of ε-Nash equilibrium concerns lack of stability: if any player
deviates (due to ε-incentive), then in general, some other player may have a high incentive to deviate
as well, resulting in a non-equilibrium profile. Worse, it may take exponentially many steps to reach
an ε-equilibrium again. Thus, stability of ε-equilibrium is an important consideration. We will now
introduce an appropriate notion of stability, and prove that γ-aggregative games admit stable pure
strategy ε-equilibrium in that any deviation by a player does not affect the equilibrium much.

Structurally Stable Aggregator (SSA): Let G = (E, V ) be a connected digraph and PG(w) be a
property of G, where w denotes the parameters of PG. Let A be an aggregator function that depends
on PG. Suppose M = (a1, a2, . . . , an) be an ε-PSNE when A aggregates information according
to PG(w), where ai is the strategy of player i ∈ V = [n]. Suppose now A aggregates information
according to PG(w′). Then, A is a (α, β)P,w,w′ -structurally stable aggregator (SSA) with respect to
G, where α and β are functions of the gap between w,w′, if it satisfies these conditions: (a) M is a
(ε + α)-equilibrium under PG(w′), and (b) the payoff of each player at the equilibrium profile M
under PG(w′) is at most β = O(α) worse than that under PG(w).

A SSA with small values of α and β with respect to a small change in w is desirable since
that would discourage the players from deviating from their ε-equilibrium strategy, however, such an
aggregator might not exist in general. The following result shows the γ-aggregator is a SSA.
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Theorem 4. Let γ ∈ (0, 1), and gG(·, ·, `, ·) be the γ-aggregator defined above. Let PG(`) be the
property “the number of maximum permissible intermediaries in a shortest path of length ` in G”.
Then, gG is a (2ηκG, ηκG)P,WG,L- SSA, where L < WG and κG depends on γ and WG − L.

5 Learning formulation

We now formulate an optimization problem to recover the underlying graph structure, the parameters
of the aggregator function, and the payoff functions. Let S = {a1, a2, . . . , aM} be our training
set, where each strategy profile am ∈ {0, 1}n is an ε-PSNE, and ami is the action of player i in
example m ∈ [M ]. Let f be a local aggregator function, and let amNi be the actions of neighbors Ni
of player i ∈ [n] on training example m. We will also represent N as a 0-1 adjacency matrix, with
the interpretation that Nij = 1 implies that j ∈ Ni, and Nij = 0 otherwise. We will use the notation
Ni· , {Nij : j 6= i}. Note that since the underlying game structure is represented as a digraph, Nij
and Nji need not be equal. Let h be a concave function such that h(0) = 0. Then Fi(h) , h(|Ni|)
is submodular since the concave transformation of the cardinality function results in a submodular
function. Moreover F (h) =

∑
i∈[n] Fi(h) is submodular since it is a sum of submodular functions.

We will use F (h) as a sparsity-inducing prior. Several choices of h have been advocated in the
literature, including suitably normalized geometric, log, smooth log and square root functions [15].

We would denote the parameters of the aggregator function f by θf . The payoff functions will depend
on the choice of this parameterization. For a fixed aggregator f (such as the sum aggregator), linear
parameterization is one possibility, where the payoff function for player i ∈ [n] takes the form,

ufi (am, Ni·) = ami wi1(wf f(amNi) + bf ) + (1− ami )wi0(wf f(amNi) + bf ),

wherewi· = (wi0, wi1)> andNi· denote the independent parameters for player i and θf = (wf , bf )>

are the shared parameters. Our setting is flexible, and we can easily accommodate more complex
aggregators instead of the standard aggregators (e.g. sum). Exchangeable functions over sets [16]
provide one such example. An interesting instantiation is a neural network comprising one hidden
layer, an output sum layer, with tied weights. Specifically, let W ∈ Rn×(n−1) where all entries of W
are equal to wNN . Let σ be an element-wise non-linearity (e.g. we used the ReLU function, σ(x) =
max{x, 0} for our experiments). Then, using the element-wise multiplication operator� and a vector
1 with all ones, ui may be expressed as ufNNi (am, Ni·) = ami wi1fNN (amNi)+(1−ami )wi0fNN (amNi),
where the permutation invariant neural aggregator, parameterized by θfNN = (wNN , bNN )>,

fNN (amNi) = 1>σ(W am−i �Ni· + bNN ).

We could have more complex functions such as deeper neural nets, with parameter sharing, at
the expense of increased computation. We believe this versatility makes local aggregative games
particularly attractive, and provides a promising avenue for modeling structured strategic settings.

Each am is an ε-PSNE, so it ensures a locally (near) optimal reward for each player. We will impose
a margin constraint on the difference in the payoffs when player i unilaterally deviates from ami .
Note that Ni = {j ∈ Ni· : Nij = 1}. Then, introducing slack variables ξmi , and hyperparameters
C,C ′, Cf > 0, we obtain the following optimization problem in O(n2) variables:

min
θf ,w1·,...,wn·,Ni·,...,Nn·,ξ

1

2

n∑
i=1

||wi·||2 +
Cf
2M
||θf ||2 +

C ′

n

n∑
i=1

Fi(h) +
C

M

n∑
i=1

M∑
m=1

ξmi

s.t. ∀i ∈ [n],m ∈ [M ] : ufi (am, Ni·)− ufi (1− am, Ni·) ≥ e(am, a′)− ξmi
∀i ∈ [n],m ∈ [M ] : ξmi ≥ 0

∀i ∈ [n] : Ni· ∈ {0, 1}n−1,

where am and a′ differ in exactly one coordinate, and e is a margin specific loss term, such as
Hamming loss eH(a, ã) = 1{a 6= ã} or scaled 0-1 loss es(a, ã) = 1{a 6= ã}/n. From a game
theoretic perspective, the scaled loss has a natural asymptotic interpretation: as the number of players
n → ∞, es(am, a′) → 0, and we get ∀i ∈ [n],m ∈ [M ] : ufi (am, Ni·) ≥ ufi (1 − am, Ni·) − ξmi ,
i.e., each training example am is an ε-PSNE, where ε = maxi∈[n],m∈[M ] ξ

m
i .

Once θf are fixed, the problem clearly becomes separable, i.e., each player i can solve an independent
sub-problem in O(n) variables. Each sub-problem includes both continuous and binary variables,
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and may be solved via branch and bound, outer approximation decomposition, or extended cutting
plane methods (see [17; 18] for an overview of these techniques). The individual solutions can be
forced to agree on θf via a standard dual decomposition procedure, and methods like alternating
direction method of multipliers (ADMM) [19] could be leveraged to facilitate rapid agreement of the
continuous parameters wf and bf . The extension to learning the γ-aggregative games is immediate.

We now describe some other optimization variants for the local aggregative games. Instead of
constraining each player to a hard neighborhood, one might relax the constraints Nij ∈ {0, 1} to
Nij ∈ [0, 1], where Nij might be interpreted as the strength of the edge (j, i). The Lovász convex
relaxation of F [20] is a natural prior for inducing sparsity in this case. Specifically, for an ordering
of values |Ni(0)| ≥ |Ni(1)| . . . ≥ |Ni(n−1)|, i ∈ [n], this prior is given by

Γh(N) =

n∑
i=1

Γh(N, i), where Γh(N, i) =

n−1∑
k=0

[h(k + 1)− h(k)]|Ni(k)|.

Since the transformation h encodes the preference for each degree, Γh(N) will act as a prior that
encourages structured sparsity. One might also enforce other constraints on the structure of the
local aggregative game. For instance, an undirected graph could be obtained by adding constraints
Nij = Nji, for i ∈ [n], j 6= i. Likewise, a minimum in-degree constraint may be enforced on player
i by requiring

∑
j Nij ≥ d. Both these constraints are linear in Ni·, and thus do not add to the

complexity of the problem. Finally, based on cues such as domain knowledge, one may wish to add a
degree of freedom by not enforcing sharing of the parameters of the aggregator among the players.

6 Experiments

We now present strong empirical evidence to demonstrate the efficacy of local aggregative games in
unraveling the aggregative game structure of two real voting datasets, namely, the US Supreme Court
Rulings dataset and the Congressional Votes dataset. Our experiments span the different variants
for recovering the structure of the aggregative games including settings where (a) parameters of
the aggregator are learned along with the payoffs, (b) in-degree of each node is lower bounded, (c)
γ-discounting is used, or (d) parameters of the aggregator are fixed. We will also demonstrate that
our method compares favorably with the potential games method for tree structured games [4], even
when we relax the digraph setting to let weights Nij ∈ [0, 1] instead of {0, 1} or force the game
structure to be undirected by adding the constraints Nij = Nji. For our purposes, we used the
smoothed square-root concave function, h(i) =

√
i+ 1− 1 + αi parameterized by α, the sum and

neural aggregators, and the scaled 0-1 loss function es(a, ã) = 1{a 6= ã}/n. We found our model to
perform well across a very wide range of hyperparameters. All the experiments described below used
the following setting of values: α = 1, C = 100, and Cf = 1. C ′ was also set to 0.01 in all settings
except when the parameters of the aggregator were fixed, when we set C ′ = 0.01

√
n.
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Kennedy
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Alito

T
Thomas
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Scalia

R
Roberts
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Sotomayor

Ka
Kagan

B Breyer

G
Ginsburg

91%

93%91%

90%

86% 80%

94% 93%
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Conservatives Liberals

Figure 1: Supreme Court Rulings (full bench): The digraph recovered by the local aggregative
and γ-aggregative games (` ≤ 2, all γ) with the sum aggregator as well as the neural aggregator is
consistent with the known behavior of the Justices: conservative and liberal sides of the bench are
well segregated from each other, while the moderate Justice Kennedy is positioned near the center.
Numbers on the arrows are taken from an independent study [21] on Justices’ mutual voting patterns.
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6.1 Dataset 1: Supreme Court Rulings

We experimented with a dataset containing all non-unanimous rulings by the US Supreme court
bench during the year 2013. We denote the Justices of the bench by their last name initials, and
add a second character to some names to avoid the conflicts in the initials: Alito (A), Breyer (B),
Ginsburg(G), Kennedy (K), Kagan (Ka), Roberts (R), Scalia (S), Sotomayor (So), and Thomas (T).
We obtained a binary dataset following the procedure described in [4].

K

AT

S R

G

B

(a) Local Aggregative

K

T

R

S

A B

G

(b) Potential Exhaustive Enumeration

K

AT

S R

G

B

(c) Local Aggregative (Undirected & Relaxed)

K

R

S

T

A B

G

(d) Potential Hamming

Figure 2: Comparison with the potential games method [4]: (a) The digraph produced by our
method with the sum as well as the neural aggregator is consistent with the expected voting behavior
of the Justices on the data used by [4] in their experiments. (c) Relaxing allNij ∈ [0, 1] and enforcing
Nij = Nji still resulted in a meaningful undirected structure. (b) & (d) The tree structures obtained
by the brute force and the Hamming distance restricted methods [4] fail to capture higher order
interactions, e.g., the strongly connected component between Justices A, T, S and R.

.

K

AT

S R

G

B

(a) Local Aggregative (d >= 2)

K

A

SR

T

B

G

(b) γ − aggregative (` = 2, γ = 0.9)

Figure 3: Degree constrained and γ-aggregative games: (a) Enforcing the degree of each node to
be at least 2 reinforces the intra-republican and the intra-democrat affinity, reaffirming their respective
jurisprudences, and (b) γ-aggregative games also support this observation: the same digraph as Fig.
2(a) is obtained unless ` and γ are set to high values (plot generated with ` = 2, γ = 0.9), when the
strong effect of one-hop and two-hop neighbors overpowers the direct connection between B and G.

Fig. 1 shows the structure recovered by the local aggregative method. The method was able to
distinguish the conservative side of the court (Justices A, R, S, and T) from the left side (B, G, Ka, and
So). Also, the structure places Justice Kennedy in between the two extremes, which is consistent with
his moderate jurisprudence. To put our method in perspective, we also compare the result of applying
our method on the same subset of the full bench data that was considered by [4] in their experiments.
Fig. 2 demonstrates how the local aggregative approach estimated meaningful structures consistent
with the full bench structure, and compared favorably with both the methods of [4]. Finally, Fig. 3(a)
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and 3(b) demonstrate the effect of enforcing minimum in-degree constraints in the local aggregative
games, and increasing ` and γ in the γ-aggregative games respectively. As expected, the estimated
γ-aggregative structure is stable unless γ and ` are set to high values when non-local effects kick in.
We provide some additional results on the degree-constrained local aggregative games (Fig. 4 ) and
the γ-aggregative games (Fig. 5). In particular, we see that the γ-aggregative games are indeed robust
to small changes in the aggregator input as expected in the light of stability result of Theorem 4.
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Figure 4: Degree constrained local aggregative games (full bench): The digraph recovered by the
local aggregative method when the degree of each node was constrained to be at least 2. Clearly,
the cohesion among the Justices on the conservative side got strengthened by the degree constraint
(likewise for the liberal side of the bench). On the other hand, no additional edges were added
between the two sides.
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Figure 5: γ-Aggregative Games (full bench): The digraph estimated by the γ-aggregative method
for ` = 2, γ = 0.9, and lower values of γ and/or `. Note that an identical structure was obtained by
the local aggregative method (Fig. 1). This indicates that despite heavily weighting the effect of the
nodes on a shortest path with one or two intermediary hops, the structure in Fig. 1 is very stable.
Also, this substantiates our theoretical result about the stability of the γ-aggregative games.

6.2 Dataset 2: Congressional Votes

We also experimented with the Congressional Votes data [22], that contains the votes by the US
Senators on all the bills of the 110 US Congress, Session 2. Each of the 100 Senators voted in
favor of (treated as 1) or against each bill (treated as 0). Fig. 6 shows that the local aggregative
method provides meaningful insights into the voting patterns of the Senators as well. In particular,
few connections exist between the nodes in red and those in blue, making the bipartisan structure
quite apparent. In some cases, the intra-party connections might be bolstered due to same state
affiliations, e.g. Senators Corker (28) and Alexander (2) represent Tennessee. The cross connections
may also capture some interesting collaborations or influences, e.g., Senators Allard (3) and Clinton
(22) introduced the Autism Act. Likewise, Collins (26) and Carper (19) reintroduced the Fire Grants
Reauthorization Act. The potential methods [4] failed to estimate some of these strategic interactions.
Likewise, Fig. 7 provides some interesting insights regarding the ideologies of some Senators that
follow a more centrist ideology than their respective political affiliations would suggest.
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Figure 6: Comparison with [4] on the Congressional Votes data: The digraph recovered by local
aggregative method, on the data used by [4], when the parameters of the sum aggregator were fixed
(wf = 1, bf = 0). The segregation between the Republicans (shown in red) and the Democrats
(shown in blue) strongly suggests that they are aligned according to their party policies.

Figure 7: Complete Congressional Votes data: The digraph recovered on fixing parameters, relax-
ing Nij to [0, 1], and thresholding at 0.05. The estimated structure not only separates majority of
the reds from the blues, but also associates closely the then independent Senators Sanders (82) and
Lieberman (62) with the Democrats. Moreover, the few reds among the blues generally identify with
a more centrist ideology - Collins (26) and Snowe (87) are two prominent examples.

Conclusion

An overwhelming majority of literature on machine learning is restricted to modeling non-strategic
settings. Strategic interactions in several real world systems such as decision/voting often exhibit local
structure in terms of how players are guided by or respond to each other. In other words, different
agents make rational moves in response to their neighboring agents leading to locally stable configu-
rations such as Nash equilibria. Another challenge with modeling the strategic settings is that they
are invariably unsupervised. Consequently, standard learning techniques such as structured prediction
that enforce global consistency constraints fall short in such settings (cf. [4]). As substantiated by our
experiments, local aggregative games nicely encapsulate various strategic applications, and could
be leveraged as a tool to glean important insights from voting data. Furthermore, the stability of
approximate equilibria is a primary consideration from a conceptual viewpoint, and the γ-aggregative
games introduced in this work add a fresh perspective by achieving structural stability.
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