Newton-Stein Method: A Second Order Method for GLMs via Stein's Lemma

Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)

Bibtex Metadata Paper Reviews Supplemental


Murat A. Erdogdu


We consider the problem of efficiently computing the maximum likelihood estimator in Generalized Linear Models (GLMs)when the number of observations is much larger than the number of coefficients (n > > p > > 1). In this regime, optimization algorithms can immensely benefit fromapproximate second order information.We propose an alternative way of constructing the curvature information by formulatingit as an estimation problem and applying a Stein-type lemma, which allows further improvements through sub-sampling andeigenvalue thresholding.Our algorithm enjoys fast convergence rates, resembling that of second order methods, with modest per-iteration cost. We provide its convergence analysis for the case where the rows of the design matrix are i.i.d. samples with bounded support.We show that the convergence has two phases, aquadratic phase followed by a linear phase. Finally,we empirically demonstrate that our algorithm achieves the highest performancecompared to various algorithms on several datasets.