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Abstract

We consider the problem of efficiently computing the maximum likelihood esti-
mator in Generalized Linear Models (GLMs) when the number of observations
is much larger than the number of coefficients (n� p� 1). In this regime, op-
timization algorithms can immensely benefit from approximate second order in-
formation. We propose an alternative way of constructing the curvature informa-
tion by formulating it as an estimation problem and applying a Stein-type lemma,
which allows further improvements through sub-sampling and eigenvalue thresh-
olding. Our algorithm enjoys fast convergence rates, resembling that of second
order methods, with modest per-iteration cost. We provide its convergence analy-
sis for the case where the rows of the design matrix are i.i.d. samples with bounded
support. We show that the convergence has two phases, a quadratic phase followed
by a linear phase. Finally, we empirically demonstrate that our algorithm achieves
the highest performance compared to various algorithms on several datasets.

1 Introduction
Generalized Linear Models (GLMs) play a crucial role in numerous statistical and machine learn-
ing problems. GLMs formulate the natural parameter in exponential families as a linear model
and provide a miscellaneous framework for statistical methodology and supervised learning tasks.
Celebrated examples include linear, logistic, multinomial regressions and applications to graphical
models [MN89, KF09].
In this paper, we focus on how to solve the maximum likelihood problem efficiently in the GLM
setting when the number of observations n is much larger than the dimension of the coefficient
vector p, i.e., n � p. GLM optimization task is typically expressed as a minimization problem
where the objective function is the negative log-likelihood that is denoted by `(�) where � 2 Rp is
the coefficient vector. Many optimization algorithms are available for such minimization problems
[Bis95, BV04, Nes04]. However, only a few uses the special structure of GLMs. In this paper, we
consider updates that are specifically designed for GLMs, which are of the from

�  � � �Qr
�

`(�) , (1.1)

where � is the step size and Q is a scaling matrix which provides curvature information.
For the updates of the form Eq. (1.1), the performance of the algorithm is mainly determined by the
scaling matrix Q. Classical Newton’s Method (NM) and Natural Gradient Descent (NG) are recov-
ered by simply taking Q to be the inverse Hessian and the inverse Fisher’s information at the current
iterate, respectively [Ama98, Nes04]. Second order methods may achieve quadratic convergence
rate, yet they suffer from excessive cost of computing the scaling matrix at every iteration. On the
other hand, if we take Q to be the identity matrix, we recover the simple Gradient Descent (GD)
method which has a linear convergence rate. Although GD’s convergence rate is slow compared to
that of second order methods, modest per-iteration cost makes it practical for large-scale problems.
The trade-off between the convergence rate and per-iteration cost has been extensively studied
[BV04, Nes04]. In n � p regime, the main objective is to construct a scaling matrix Q that
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is computational feasible and provides sufficient curvature information. For this purpose, several
Quasi-Newton methods have been proposed [Bis95, Nes04]. Updates given by Quasi-Newton meth-
ods satisfy an equation which is often referred as the Quasi-Newton relation. A well-known member
of this class of algorithms is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [Nes04].
In this paper, we propose an algorithm that utilizes the structure of GLMs by relying on a Stein-type
lemma [Ste81]. It attains fast convergence rate with low per-iteration cost. We call our algorithm
Newton-Stein Method which we abbreviate as NewSt . Our contributions are summarized as follows:

• We recast the problem of constructing a scaling matrix as an estimation problem and apply
a Stein-type lemma along with sub-sampling to form a computationally feasible Q.

• Newton method’s O(np2 + p3) per-iteration cost is replaced by O(np + p2) per-iteration
cost and a one-time O(n|S|2) cost, where |S| is the sub-sample size.

• Assuming that the rows of the design matrix are i.i.d. and have bounded support, and
denoting the iterates of Newton-Stein method by {ˆ�t}

t�0

, we prove a bound of the form
�

�

ˆ�t+1 � �⇤
�

�

2

 ⌧
1

�

�

ˆ�t � �⇤
�

�

2

+ ⌧
2

�

�

ˆ�t � �⇤
�

�

2

2

, (1.2)

where �⇤ is the minimizer and ⌧
1

, ⌧
2

are the convergence coefficients. The above bound
implies that the convergence starts with a quadratic phase and transitions into linear later.

• We demonstrate its performance on four datasets by comparing it to several algorithms.

The rest of the paper is organized as follows: Section 1.1 surveys the related work and Section 1.2
introduces the notations used throughout the paper. Section 2 briefly discusses the GLM framework
and its relevant properties. In Section 3, we introduce Newton-Stein method, develop its intuition,
and discuss the computational aspects. Section 4 covers the theoretical results and in Section 4.3
we discuss how to choose the algorithm parameters. Finally, in Section 5, we provide the empirical
results where we compare the proposed algorithm with several other methods on four datasets.

1.1 Related work
There are numerous optimization techniques that can be used to find the maximum likelihood esti-
mator in GLMs. For moderate values of n and p, classical second order methods such as NM, NG
are commonly used. In large-scale problems, data dimensionality is the main factor while choos-
ing the right optimization method. Large-scale optimization tasks have been extensively studied
through online and batch methods. Online methods use a gradient (or sub-gradient) of a single,
randomly selected observation to update the current iterate [Bot10]. Their per-iteration cost is inde-
pendent of n, but the convergence rate might be extremely slow. There are several extensions of the
classical stochastic descent algorithms (SGD), providing significant improvement and/or stability
[Bot10, DHS11, SRB13].
On the other hand, batch algorithms enjoy faster convergence rates, though their per-iteration cost
may be prohibitive. In particular, second order methods attain quadratic rate, but constructing the
Hessian matrix requires excessive computation. Many algorithms aim at forming an approximate,
cost-efficient scaling matrix,. This idea lies at the core of Quasi-Newton methods [Bis95].
Another approach to construct an approximate Hessian makes use of sub-sampling techniques
[Mar10, BCNN11, VP12, EM15]. Many contemporary learning methods rely on sub-sampling as
it is simple and it provides significant boost over the first order methods. Further improvements
through conjugate gradient methods and Krylov sub-spaces are available.
Many hybrid variants of the aforementioned methods are proposed. Examples include the combina-
tions of sub-sampling and Quasi-Newton methods [BHNS14], SGD and GD [FS12], NG and NM
[LRF10], NG and low-rank approximation [LRMB08]. Lastly, algorithms that specialize on cer-
tain types of GLMs include coordinate descent methods for the penalized GLMs [FHT10] and trust
region Newton methods [LWK08].
1.2 Notation
Let [n] = {1, 2, ..., n}, and denote the size of a set S by |S|. The gradient and the Hessian of f
with respect to � are denoted by r

�

f and r2

�

f , respectively. The j-th derivative of a function g

is denoted by g(j). For vector x 2 Rp and matrix X 2 Rp⇥p, kxk
2

and kXk
2

denote the `
2

and
spectral norms, respectively. PC is the Euclidean projection onto set C, and B

p

(R) ⇢ Rp is the
ball of radius R. For random variables x, y, d(x, y) and D(x, y) denote probability metrics (to be
explicitly defined later), measuring the distance between the distributions of x and y.
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2 Generalized Linear Models

Distribution of a random variable y 2 R belongs to an exponential family with natural parameter ⌘ 2
R if its density can be written of the form f(y|⌘) = exp

�

⌘y � �(⌘)
�

h(y), where � is the cumulant
generating function and h is the carrier density. Let y

1

, y
2

, ..., y
n

be independent observations such
that 8i 2 [n], y

i

⇠ f(y
i

|⌘
i

). For ⌘ = (⌘
1

, ..., ⌘
n

), the joint likelihood is

f(y
1

, y
2

, ..., y
n

|⌘) = exp

(

n

X

i=1

[y
i

⌘
i

� �(⌘
i

)]

)

n

Y

i=1

h(y
i

).

We consider the problem of learning the maximum likelihood estimator in the above exponential
family framework, where the vector ⌘ 2 Rn is modeled through the linear relation,

⌘ = X�,

for some design matrix X 2 Rn⇥p with rows x
i

2 Rp, and a coefficient vector � 2 Rp. This formu-
lation is known as Generalized Linear Models (GLMs) in canonical form. The cumulant generating
function � determines the class of GLMs, i.e., for the ordinary least squares (OLS) �(z) = z2 and
for the logistic regression (LR) �(z) = log(1 + ez).
Maximum likelihood estimation in the above formulation is equivalent to minimizing the negative
log-likelihood function `(�),

`(�) =
1

n

n

X

i=1

[�(hx
i

,�i)� y
i

hx
i

,�i] , (2.1)

where hx,�i is the inner product between the vectors x and �. The relation to OLS and LR can be
seen much easier by plugging in the corresponding �(z) in Eq. (2.1). The gradient and the Hessian
of `(�) can be written as:

r
�

`(�) =
1

n

n

X

i=1

h

�(1)

(hx
i

,�i)x
i

� y
i

x
i

i

, r2

�

`(�) =
1

n

n

X

i=1

�(2)

(hx
i

,�i)x
i

xT

i

. (2.2)

For a sequence of scaling matrices {Qt}
t>0

2 Rp⇥p, we consider iterations of the form
ˆ�t+1  ˆ�t � �

t

Qtr
�

`( ˆ�t

),

where �
t

is the step size. The above iteration is our main focus, but with a new approach on how to
compute the sequence of matrices {Qt}

t>0

. We formulate the problem of finding a scalable Qt as
an estimation problem and use a Stein-type lemma that provides a computationally efficient update.

3 Newton-Stein Method
Classical Newton-Raphson update is generally used for training GLMs. However, its per-iteration
cost makes it impractical for large-scale optimization. The main bottleneck is the computation of
the Hessian matrix that requires O(np2) flops which is prohibitive when n � p � 1. Numerous
methods have been proposed to achieve NM’s fast convergence rate while keeping the per-iteration
cost manageable.
The task of constructing an approximate Hessian can be viewed as an estimation problem. Assuming
that the rows of X are i.i.d. random vectors, the Hessian of GLMs with cumulant generating function
� has the following form

⇥

Qt

⇤�1

=

1

n

n

X

i=1

x
i

xT

i

�(2)

(hx
i

,�i) ⇡ E[xxT�(2)

(hx,�i)] .

We observe that [Qt

]

�1 is just a sum of i.i.d. matrices. Hence, the true Hessian is nothing but a sam-
ple mean estimator to its expectation. Another natural estimator would be the sub-sampled Hessian
method suggested by [Mar10, BCNN11, EM15]. Similarly, our goal is to propose an appropriate
estimator that is also computationally efficient.
We use the following Stein-type lemma to derive an efficient estimator to the expectation of Hessian.
Lemma 3.1 (Stein-type lemma). Assume that x ⇠ N

p

(0,⌃) and � 2 Rp is a constant vector. Then
for any function f : R! R that is twice “weakly" differentiable, we have

E[xxT f(hx,�i)] = E[f(hx,�i)]⌃+ E[f (2)

(hx,�i)]⌃��T⌃ . (3.1)
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Algorithm 1 Newton-Stein method

Input: ˆ�0, r, ✏, �.
1. Set t = 0 and sub-sample a set of indices S ⇢ [n] uniformly at random.
2. Compute: �̂2

= �
r+1

(

b⌃
S

), and ⇣
r

(

b⌃
S

) = �̂2I+argminrank(M ) = r

�

�b⌃
S

� �̂2I�M
�

�

F

.

3. while
�

�

ˆ�t+1 � ˆ�t

�

�

2

 ✏ do
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2

(

ˆ�t
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n
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i=1

�(2)

(hx
i
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4

(

ˆ�t
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n

P

n

i=1

�(4)

(hx
i

, ˆ�ti),

Qt

=

1

µ̂2(
ˆ

�

t
)

h

⇣
r

(

b⌃
S

)

�1 � ˆ

�

t
[

ˆ

�

t
]

T

µ̂2(
ˆ

�

t
)/µ̂4(

ˆ

�

t
)+h⇣r(b⌃S)

ˆ

�

t
,

ˆ

�

ti

i

,

ˆ�t+1

= P
Bp(R)

⇣

ˆ�t � �Qtr
�

`( ˆ�t

)

⌘

,

t t+ 1.
4. end while
Output: ˆ�t.

The proof of Lemma 3.1 is given in Appendix. The right hand side of Eq.(3.1) is a rank-1 update to
the first term. Hence, its inverse can be computed with O(p2) cost. Quantities that change at each
iteration are the ones that depend on �, i.e.,

µ
2

(�) = E[�(2)

(hx,�i)] and µ
4

(�) = E[�(4)

(hx,�i)].
µ
2

(�) and µ
4

(�) are scalar quantities and can be estimated by their corresponding sample means
µ̂
2

(�) and µ̂
4

(�) (explicitly defined at Step 3 of Algorithm 1), with only O(np) computation.
To complete the estimation task suggested by Eq. (3.1), we need an estimator for the covariance
matrix ⌃. A natural estimator is the sample mean where, we only use a sub-sample S ⇢ [n] so
that the cost is reduced to O(|S|p2) from O(np2). Sub-sampling based sample mean estimator
is denoted by b⌃

S

=

P

i2S

x
i

xT

i

/|S|, which is widely used in large-scale problems [Ver10]. We
highlight the fact that Lemma 3.1 replaces NM’s O(np2) per-iteration cost with a one-time cost of
O(np2). We further use sub-sampling to reduce this one-time cost to O(|S|p2).
In general, important curvature information is contained in the largest few spectral features. Follow-
ing [EM15], we take the largest r eigenvalues of the sub-sampled covariance estimator, setting rest
of them to (r + 1)-th eigenvalue. This operation helps denoising and would require only O(rp2)
computation. Step 2 of Algorithm 1 performs this procedure.
Inverting the constructed Hessian estimator can make use of the low-rank structure several times.
First, notice that the updates in Eq. (3.1) are based on rank-1 matrix additions. Hence, we can sim-
ply use a matrix inversion formula to derive an explicit equation (See Qt in Step 3 of Algorithm
1). This formulation would impose another inverse operation on the covariance estimator. Since
the covariance estimator is also based on rank-r approximation, one can utilize the low-rank in-
version formula again. We emphasize that this operation is performed once. Therefore, instead of
NM’s per-iteration cost of O(p3) due to inversion, Newton-Stein method (NewSt ) requires O(p2)
per-iteration and a one-time cost of O(rp2). Assuming that NewSt and NM converge in T

1

and
T
2

iterations respectively, the overall complexity of NewSt is O
�

npT
1

+ p2T
1

+ (|S|+ r)p2
�

⇡
O
�

npT
1

+ p2T
1

+ |S|p2
�

whereas that of NM is O
�

np2T
2

+ p3T
2

�

.
Even though Proposition 3.1 assumes that the covariates are multivariate Gaussian random vectors,
in Section 4, the only assumption we make on the covariates is that they have bounded support,
which covers a wide class of random variables. The left plot of Figure 1 shows that the estimation
is accurate for various distributions. This is a consequence of the fact that the proposed estimator in
Eq. (3.1) relies on the distribution of x only through inner products of the form hx, vi, which in turn
results in approximate normal distribution due to the central limit theorem when p is sufficiently
large. We will discuss this phenomenon in detail in Section 4.
The convergence rate of Newton-Stein method has two phases. Convergence starts quadratically and
transitions into a linear rate when it gets close to the true minimizer. The phase transition behavior
can be observed through the right plot in Figure 1. This is a consequence of the bound provided in
Eq. (1.2), which is the main result of our theorems stated in Section 4.
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Figure 1: The left plot demonstrates the accuracy of proposed Hessian estimation over different distributions.
Number of observations is set to be n = O(p log(p)) . The right plot shows the phase transition in the con-
vergence rate of Newton-Stein method (NewSt ). Convergence starts with a quadratic rate and transitions into
linear. Plots are obtained using Covertypedataset.

4 Theoretical results
We start this section by introducing the terms that will appear in the theorems. Then, we provide our
technical results on uniformly bounded covariates. The proofs are provided in Appendix.

4.1 Preliminaries
Hessian estimation described in the previous section relies on a Gaussian approximation. For theo-
retical purposes, we use the following probability metric to quantify the gap between the distribution
of xi ’s and that of a normal vector.

DeÞnition 1. Given a family of functionsH, and random vectorsx, y ! Rp, and anyh ! H , deÞne

dH (x, y) = sup

h2H
dh (x, y) where dh (x, y) =

�

�E [h(x)] " E [h(y)]
�

�.

Many probability metrics can be expressed as above by choosing a suitable function class H . Exam-
ples include Total Variation(TV), Kolmogorovand Wassersteinmetrics [GS02, CGS10]. Based on
the second and fourth derivatives of cumulant generating function, we define the following classes:

H
1

=

n

h(x) = �(2)

(#x,�$) : � ! Bp(R)

o

, H
2

=

n

h(x) = �(4)

(#x,�$) : � ! Bp(R)

o

,

H
3

=

n

h(x) = #v, x$2�(2)

(#x,�$) : � ! Bp(R), %v%
2

= 1

o

,

where Bp(R) ! Rp is the ball of radius R. Exact calculation of such probability metrics are often
difficult. The general approach is to upper bound the distance by a more intuitive metric. In our
case, we observe that dH j (x, y) for j = 1, 2, 3, can be easily upper bounded by dTV(x, y) up to a
scaling constant, when the covariates have bounded support.
We will further assume that the covariance matrix follows r -spiked model, i.e., ⌃ = �2I +

Pr
i=1

✓i ui uT
i , which is commonly encountered in practice [BS06]. This simply means that the first

r eigenvalues of the covariance matrix are large and the rest are small and equal to each other. Large
eigenvalues of ⌃ correspond to the signal part and small ones (denoted by �2) can be considered as
the noise component.

4.2 Composite convergence rate

We have the following per-step bound for the iterates generated by the Newton-Stein method, when
the covariates are supported on a p-dimensional ball.

Theorem 4.1. Assume that the covariatesx
1

, x
2

, ..., xn are i.i.d. random vectors supported on a
ball of radius

&
K with

E[xi ] = 0 and E
⇥

xi xT
i

⇤

= ⌃,

where⌃ follows ther -spiked model. Further assume that the cumulant generating function� has
bounded 2nd-5th derivatives and thatR is the radius of the projectionPB p(R )

. For
�

ˆ�t
 

t> 0

given
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