A Synaptical Story of Persistent Activity with Graded Lifetime in a Neural System

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex Metadata Paper Reviews


Yuanyuan Mi, Luozheng Li, Dahui Wang, Si Wu


Persistent activity refers to the phenomenon that cortical neurons keep firing even after the stimulus triggering the initial neuronal responses is moved. Persistent activity is widely believed to be the substrate for a neural system retaining a memory trace of the stimulus information. In a conventional view, persistent activity is regarded as an attractor of the network dynamics, but it faces a challenge of how to be closed properly. Here, in contrast to the view of attractor, we consider that the stimulus information is encoded in a marginally unstable state of the network which decays very slowly and exhibits persistent firing for a prolonged duration. We propose a simple yet effective mechanism to achieve this goal, which utilizes the property of short-term plasticity (STP) of neuronal synapses. STP has two forms, short-term depression (STD) and short-term facilitation (STF), which have opposite effects on retaining neuronal responses. We find that by properly combining STF and STD, a neural system can hold persistent activity of graded lifetime, and that persistent activity fades away naturally without relying on an external drive. The implications of these results on neural information representation are discussed.