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Abstract

Persistent activity refers to the phenomenon that cortical neurons keep firing even
after the stimulus triggering the initial neuronal responses is moved. Persistent
activity is widely believed to be the substrate for a neural system retaining a mem-
ory trace of the stimulus information. In a conventional view, persistent activity is
regarded as an attractor of the network dynamics, but it faces a challenge of how
to be closed properly. Here, in contrast to the view of attractor, we consider that
the stimulus information is encoded in a marginally unstable state of the network
which decays very slowly and exhibits persistent firing for a prolonged duration.
We propose a simple yet effective mechanism to achieve this goal, which utilizes
the property of short-term plasticity (STP) of neuronal synapses. STP has two
forms, short-term depression (STD) and short-term facilitation (STF), which have
opposite effects on retaining neuronal responses. We find that by properly combin-
ing STF and STD, a neural system can hold persistent activity of graded lifetime,
and that persistent activity fades away naturally without relying on an external
drive. The implications of these results on neural information representation are
discussed.

1 Introduction

Stimulus information is encoded in neuronal responses. Persistent activity refers to the phenomenon
that cortical neurons keep firing even after the stimulus triggering the initial neural responses is
removed [1, 2, 3]. It has been widely suggested that persistent activity is the substrate for a neu-
ral system to retain a memory trace of the stimulus information [4]. For instance, in the classical
delayed-response task where an animal needs to memorize the stimulus location for a given pe-
riod of time before taking an action, it was found that neurons in the prefrontal cortex retained
high-frequency firing during this waiting period, indicating that persistent activity may serve as the
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neural substrate of working memory [2]. Understanding the mechanism of how persistent activity is
generated in neural systems has been at the core of theoretical neuroscience for decades [5, 6, 7].

In a conventional view, persistent activity is regarded as an emergent property of network dynamic-
s: neurons in a network are reciprocally connected with each other via excitatory synapses, which
form a positive feedback loop to maintain neural responses in the absence of an external drive; and
meanwhile a matched inhibition process suppresses otherwise explosive neural activities. Mathe-
matically, this view is expressed as the dynamics of an attractor network, in which persistent activity
corresponds to a stationary state (i.e., an attractor) of the network. The notion of attractor dynamics
is appealing, which qualitatively describes a number of brain functions, but its detailed implementa-
tion in neural systems remains to be carefully evaluated.

A long-standing debate on the feasibility of attractor dynamics is on how to properly close the at-
tractor states in a network: once a neural system is evolved into a self-sustained active state, it will
stay there forever until an external force pulls it out. Solutions including applying a strong global in-
hibitory input to shut-down all neurons simultaneously, or applying a strong global excitatory input
to excite all neurons and force them to fall into the refractory period simultaneously, were suggest-
ed [9], but none of them appears to be natural or feasible in all conditions. From the computational
point of view, it is also unnecessary for a neural system to hold a mathematically perfect attractor
state lasting forever. In reality, the brain only needs to hold the stimulus information for a finite
amount of time necessary for the task. For instance, in the delayed-response task, the animal only
needed to memorize the stimulus location for the waiting period [1].

To address the above issues, here we propose a novel mechanism to retain persistent activity in neu-
ral systems, which gives up the concept of prefect attractor, but rather consider that a neural system
is in a marginally unstable state which decays very slowly and exhibits persistent firing for a pro-
longed period. The proposed mechanism utilizes a general feature of neuronal interaction, i.e., the
short-term plasticity (STP) of synapses [10, 11]. STP has two forms: short-term depression (STD)
and short-term facilitation (STF). The former is due to depletion of neurotransmitters after neural
firing, and the latter is due to elevation of calcium level after neural firing which increases the re-
lease probability of neurotransmitters. STD and STP have opposite effects on retaining prolonged
neuronal responses: the former weakens neuronal interaction and hence tends to suppress neuronal
activities; whereas, the latter strengthens neuronal interaction and tends to enhance neuronal activ-
ities. Interestingly, we find that the interplay between the two processes endows a neural system
with the capacity of holding persistent activity with desirable properties, including: 1) the lifetime
of persistent activity can be arbitrarily long depending on the parameters; and 2) persistent activity
fades away naturally in a network without relying on an external force. The implications of these
results on neural information representation are discussed.

2 The Model

Without loss of generality, we consider a homogeneous network in which neurons are randomly and
sparsely connected with each other with a small probability p. The dynamics of a single neuron is
described by an integrate-and-fire process, which is given by

τ
dvi
dt

= −(vi − VL) +Rmhi, for i = 1 . . . N, (1)

where vi is the membrane potential of the ith neuron and τ the membrane time constant. VL is the
resting potential. hi is the synaptic current and Rm the membrane resistance. A neuron fires when
its potential exceeds the threshold, i.e., vi > Vth, and after that vi is reset to be VL. N the number
of neurons.

The dynamics of the synaptic current is given by

τs
dhi

dt
= −hi +

1

Np

∑
j

Jiju
+
j x

−
j δ(t− tspj ) + Iextδ(t− texti ), (2)

where τs is the synaptic time constant, which is about 2 ∼ 5ms. Jij is the absolute synaptic efficacy
from neurons j to i. Jij = J0 if there is a connection from the neurons j to i, and Jij = 0 otherwise.
tspj denotes the spiking moment of the neuron j. All neurons in the network receive an external input
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in the form of Poisson spike train. Iext represents the external input strength and texti the moment
of the Poisson spike train the neuron i receives.

The variables uj and xj measure, respectively, the STF and STD effects on the synapses of the jth
neuron, whose dynamics are given by [12, 13]

τf
duj

dt
= −uj + τfU(1− u−

j )δ(t− tspj ), (3)

τd
dxj

dt
= 1− xj − τdu

+
j x

−
j δ(t− tspj ), (4)

where uj is the release probability of neurotransmitters, with u+
j and u−

j denoting, respectively,
the values of uj just after and just before the arrival of a spike. τf is the time constant of STF.
U controls the increment of uj produced by a spike. Upon the arrival of a spike, u+

j = u−
j +

U(1 − u−
j ). xj represents the fraction of available neurotransmitters, with x+

j and x−
j denoting,

respectively, the values of xj just after and just before the arrival of a spike. τd is the recover time
of neurotransmitters. Upon the arrival of a spike, x+

j = x−
j − u+

j x
−
j . The time constants τf and τd

are typically in the time order of hundreds to thousands of milliseconds, much larger than τ and τs,
that is, STP is a slow process compared to neural firing.

2.1 Mean-field approximation

As to be confirmed by simulation, neuronal firings in the state of persistent activity are irregular and
largely independent to each other. Therefore, we can assume that the responses of individual neurons
are statistically equivalent in the state of persistent activity. Under this mean-field approximation,
the dynamics of a single neuron, and so does the mean activity of the network, can be written as [7]

τs
dh

dt
= −h+ J0uxR+ I, (5)

τf
du

dt
= −u+ τfU(1− u)R, (6)

τd
dx

dt
= 1− x− τduxR, (7)

where the state variables are the same for all neurons. R is the firing rate of a neuron, which is also
the mean activity of the neuron ensemble. I = Iextλ denotes the external input with λ the rate of
the Poisson spike train. The exact relationship between the firing rate R and the synaptic input h is
difficult to obtain. Here, we assume it to be of the form,

R = max(βh, 0), (8)

with β a positive constant.

3 The Mechanism

By using the mean-field model, we first elucidate the working mechanism underlying the generation
of persistent activity of finite lifetime. Later we carry out simulation to confirm the theoretical
analysis.

3.1 How to generate persistent activity of finite lifetime

For the illustration purpose, we only study the dynamics of the firing rate R and assume that the
variables u and x reach to their steady values instantly. This approximation is in general inaccurate,
since u and x are slow variables compared to R. Nevertheless, it gives us insight into understanding
the network dynamics.

By setting du/dt = 0 and dx/dt = 0 in Eqs.(6,7) and substituting them into Eqs.(5,8), we get that,
for I = 0 and R ≥ 0,

τs
dR

dt
= −R+

J0βτfUR2

1 + τfUR+ τdτfUR2
≡ F (R). (9)
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Figure 1: The steady states of the network, i.e., the solutions of Eq.(9), have three forms depending
on the parameter values. The three lines correspond to the different neuronal connection strenghths,
which are J0 = 4, 4.38, 5, respectively. The other parameters are: τs = 5ms, τd = 100ms, τf =
700ms, β = 1, U = 0.05 and Jc = 4.38.

Define a critical connection strength Jc ≡
(
1 + 2

√
τd/(τfU)

)
/β, which is the point the network

dynamics experiences saddle-node bifurcation (see Figure 1). Depending on the parameters, the
steady states of the network have three forms

• When J0 < Jc, F (R) = 0 has only one solution at R = 0, i.e., the network is only stable
at the silent state;

• When J0 > Jc, F (R) = 0 has three solutions, and the network can be stable at the silent
state and an active state;

• When J0 = Jc, F (R) = 0 has two solutions, one is the stable silent state, and the other is
a neutral stable state, referred to as R∗.

The interesting behavior occurs at J0 = J−
c , i.e., J0 is slightly smaller than the critical connection

strength Jc. In this case, the network is only stable at the silent state. However, since near to the
state R∗, F (R) is very close to zero (and so does |dR/dt|), the decay of the network activity is very
slow in this region (Figure 2A). Suppose that the network is initially at a state R > R∗, under the
network dynamics, the system will take a considerable amount of time to pass through the state R∗

before reaching to silence. This is manifested by that the decay of the network activity exhibits a
long plateau around R∗ before dropping to silence rapidly (Figure 2B). Thus, persistent activity of
finite lifetime is achieved.

The lifetime of persistent activity, which is dominated by the time of the network state passing
through the point R∗, is calculated to be (see Appendix A),

T ∼ 2τs√
F (R∗)F ′′(R∗)

, (10)

where F ′′(R∗) = d2F (R)/d2R|R∗ . By varying the STP effects, such as τd and τf , the value of
F (R∗)F ′′(R∗) is changed, and the lifetime of persistent activity can be adjusted.

3.2 Persistent activity of graded lifetime

We formally analyze the condition for the network holding persistent activity of finite lifetime.
Inspired by the result in the proceeding section, we focus on the parameter regime of J0 = Jc, i.e.,
the situation when the network has the stable silent state and a neutral stable active state.

Denote (R∗, u∗, x∗) to be the neutral stable state of the network at J0 = Jc. Linearizing the network
dynamics at this point, we obtain

d

dt

(
R−R∗

u− u∗
x− x∗

)
≃ A

(
R−R∗

u− u∗
x− x∗

)
, (11)

4



0

R

F
(R
)

R*

0

A B

0 2 4 6 8

R
*

t(s)

R
(H
z
)

Figure 2: Persistent activity of finite lifetime. Obtained by solving Eqs.(5-8). (A) When J0 = J−
c ,

the function F (R), and so does dR/dt, is very close to zero at the state R∗. Around this point, the
network activity decays very slowly. The inset shows the fine structure in the vicinity of R∗. (B) An
external input (indicated by the red bar) triggers the network response. After removing the external
input, the network activity first decays quickly, and then experiences a long plateau before dropping
to silence rapidly. The parameters are: τs = 5ms, τd = 10ms, τf = 800ms, β = 1, U = 0.5,
I = 10, Jc = 1.316 and J0 = 1.315.

where A is the Jacobian matrix (see Appendix B).

It turns out that the matrix A always has one eigenvector with vanishing eigenvalue, a property due to
that (R∗, u∗, x∗) is the neutral stable state of the network dynamics. As demonstrated in Sec.3.1, by
choosing J0 = J−

c , we expect that the network state will decay very slowly along the eigenvector of
vanishing eigenvalue, which we call the decay-direction. To ensure this always happens, it requires
that the real parts of the other two eigenvalues of A are negative, so that any perturbation of the
network state away from the decay-direction will be pulled back; otherwise, the network state may
approach to silence rapidly via other routes avoiding the state (R∗, u∗, x∗). This idea is illustrated
in Fig.3.

The condition for the real parts of the other two eigenvalues of A being smaller than zero is calcu-
lated to be (see Appendix B):

2

τfτd
+

1

τd

√
U

τfτd
+

1

τdτs

1

1 +
√

τfU
τd

− 1

τfτs
> 0. (12)

This inequality together with J0 = J−
c form the condition for the network holding persistent activity

of finite lifetime.

t

R
R

*

3-D view

Decay-direction

Figure 3: Illustration of the slow-decaying process of the network activity. The network dynamics
experiences a long plateau before dropping to silence quickly. The inset presents a 3-D view of the
local dynamics in the plateau region, where the network state is attracted to the decay-direction to
ensure slow-decaying.

By solving the network dynamics Eqs.(5-8), we calculate how the lifetime of persistent activity
changes with the STP effect. Fig.4A presents the results of fixing U and J0 and varying τd and

5



τf , We see that below the critical line J0 = Jc, which is the region for J0 > Jc, the network has
prefect attractor states never decaying; and above the critical line, the network has only the stable
silent state. Close to the critical line, the network activity decays slowly and displays persistent
activity of finite lifetime. Fig.4B shows a case that when the STF strength (τf ) is fixed, the lifetime
of persistent activity decreases with the STD strength (τd). This is understandable, since STD tends
to suppress neuronal responses. Fig.4C shows a case that when τd is fixed, the lifetime of persistent
activity increases with τf , due to that STF enhances neuronal responses. These results demonstrate
that by regulating the effects of STF and STD, the lifetime of persistent activity can be adjusted.
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Figure 4: (A). The lifetimes of the network states with respect to τf and τd when U and J0 are fixed.
We use an external input to trigger a strong response of the network and then remove the input. The
lifetime of a network state is measured from the offset of the external input to the moment when the
network returns to silence. The white line corresponds to the condition of J0 = Jc, below which
the network has attractors lasting forever; and above which, the lifetime of a network state gradually
decreases (coded by colour). (B) When τf = 1250ms is fixed, the lifetime of persistent activity
decreases with τd (the vertical dashed line in A). (C) When τd = 260ms is fixed, the lifetime of
persistent activity increases with τf (the horizontal dashed line in A). The other parameters are:
τs = 5ms, β = 1, U = 0.05 and J0 = 5.

4 Simulation Results

We carry out simulation with the spiking neuron network model given by Eqs.(1-4) to further confirm
the above theoretical analysis. A homogenous network with N = 1000 neurons is used, and in the
network neurons are randomly and sparsely connected with each other with a probability p = 0.1.
At the state of persistent activity, neurons fire irregularly (the mean value of Coefficient of Variation
is 1.29)and largely independent to each other(the mean correlation of all spike train pairs is 0.30)
with each other (Fig.5A). Fig.5 present the examples of the network holding persistent activity with
varied lifetimes, through different combinations of STF and STD satisfying the condition Eq.(12).

5 Conclusions

In the present study, we have proposed a simple yet effective mechanism to generate persistent
activity of graded lifetime in a neural system. The proposed mechanism utilizes the property of STP,
a general feature of neuronal synapses, and that STF and STD have opposite effects on retaining
neuronal responses. We find that with properly combined STF and STD, a neural system can be in a
marginally unstable state which decays very slowly and exhibits persistent firing for a finite lifetime.
This persistent activity fades away naturally without relying on an external force, and hence avoids
the difficulty of closing an active state faced by the conventional attractor networks.

STP has been widely observed in the cortex and displays large diversity in different region-
s [14, 15, 16]. Compared to static ones, dynamical synapses with STP greatly enriches the response
patterns and dynamical behaviors of neural networks, which endows neural systems with informa-
tion processing capacities which are otherwise difficult to implement using purely static synapses.
The research on the computational roles of STP is receiving increasing attention in the field [12]. In
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Figure 5: The simulation results of the spiking neural network. (A) A raster plot of the responses of
50 example neurons randomly chosen from the network. The external input is applied for the first
0.5 second. The persistent activity lasts about 1100ms. The parameters are: τf = 800ms, τd =
500ms,U = 0.5, J0 = 28.6. (B) The firing rate of the network for the case (A). (C) An example
of persistent activity of negligible lifetime. The parameters are:τf = 800ms, τd = 1800ms,U =
0.5, J0 = 28.6. (D) An example of persistent activity of around 400ms lifetime. The parameters
are:τf = 600ms, τd = 500ms,U = 0.5, J0 = 28.6. (E) An example of the network holding an
attractor lasting forever. The parameters are: τf = 800ms, τd = 490ms,U = 0.5, J0 = 28.6.

terms of information presentation, a number of appealing functions contributed by STP were pro-
posed. For instances, Mongillo et al. proposed an economical way of using the facilitated synapses
due to STF to realize working memory in the prefrontal cortex without recruiting neural firing [8];
Pfister et al. suggested that STP enables a neuron to estimate the membrane potential information
of the pre-synaptic neuron based on the spike train it receives [17]. Torres et al. found that STD
induces instability of attractor states in a network, which could be useful for memory searching [18];
Fung et al. found that STD enables a continuous attractor network to have a slow-decaying state in
the time order of STD, which could serve for passive sensory memory [19]. Here, our study reveals
that through combining STF and STD properly, a neural system can hold stimulus information for
an arbitrary time, serving for different computational purposes. In particular, STF tends to increase
the lifetime of persistent activity; whereas, STD tends to decrease the lifetime of persistent activity.
This property may justify the diverse distribution of STF and STD in different cortical regions. For
instances, in the prefrontal cortex where the stimulus information often needs to be held for a long
time in order to realize higher cognitive functions, such as working memory, STF is found to be
dominating; whereas, in the sensory cortex where the stimulus information will be forwarded to
higher cortical regions shortly, STD is found to be dominating. Furthermore, our findings suggest
that a neural system may actively regulate the combination of STF and STD, e.g., by applying ap-
propriate neural modulators [10], so that it can hold the stimulus information for a flexible amount
of time depending on the actual computational requirement. Further experimental and theoretical
studies are needed to clarify these interesting issues.
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Appendix A: The lifetime of persistent activity

Consider the network dynamics Eq.(9). When J0 = Jc, the network has a stable silent state (R = 0)
and an unstable active state, referred to as R∗ (Fig.1). We consider that J0 = J−

c . In this case,
F (R∗) is slightly smaller than zero (Fig.2A). Starting from a state R > R∗, the network will take
a considerable amount of time to cross the point R∗, since dR/dt is very small in this region, and
the network exhibits persistent activity for a considerable amount of time. We estimate the time
consuming for the network crossing the point R∗.

According to Eq.(9), we have

T∫
0

dt =

R∗
+∫

R∗
−

τs
F (R)

dR ≈

R∗
+∫

R∗
−

τsdR

F (R∗) + (R−R∗)2F ′′(R∗)/2
,

=
2τs√

F (R∗)F ′′(R∗)

[
arctg

R∗
+ −R∗√

F (R∗)/F ′′(R∗)
− arctg

R∗
− −R∗√

F (R∗)/F ′′(R∗)

]
,

=
2τs√

F (R∗)F ′′(R∗)
G(R∗), (13)

where R∗
+ and R∗

− denote, respectively, the points slightly larger or smaller than R∗, F ′(R∗) =
dF (R)/dR|R∗ , and F ′′(R∗) = dF ′(R)/dR|R∗ . To get the above result, we used the second-order
Taylor expansion of F (R) at R∗, and the condition F ′(R∗) = 0.

In the limit of F (R∗) → 0, the value of G(R∗) is bounded. Thus, the lifetime of persistent activity
is in the order of

T ∼ 2τs√
F (R∗)F ′′(R∗)

. (14)

Appendix B: The condition for the network holding persistent activity of finite
lifetime

Denote (R∗, u∗, x∗) to be the neutral stable state of the network when J0 = Jc, which is calculated
to be (by solving Eqs.(5-8)),

R∗ =
√
1/τfτdU, u∗ =

τfUR∗

1 + τfUR∗ , x∗ =
1 + τfUR∗

1 + τfUR∗ + τfτdUR∗2
. (15)

Linearizing the network dynamics at this point, we obtain Eq.(12), in which the Jacobian matrix A
is given by

A =

(
(J0u

∗x∗ − 1)/τs, J0x
∗R∗/τs, J0u

∗R∗/τs
U(1− u∗), −1/τf − UR∗, 0
−u∗x∗, −x∗R∗, −1/τd − u∗R∗

)
. (16)

The eigenvalues of the Jacobian matrix satisfy the equality |A − λI| = 0. Utilizing Eqs.(15), this
equality becomes

λ(λ2 + bλ+ cλ) = 0, (17)

where the coefficients b and c are given by

b =
1

τd
+

1

τf
+ u∗R∗ + UR∗, (18)

c =
2

τfτd
+

1

τd

√
U

τfτd
+

1

τdτs

1

1 +
√

τfU
τd

− 1

τfτs
. (19)

From Eq.(17), we see that the matrix A has three eigenvalues. One eigenvalue, referred to as λ1, is
always zero. The other two eigenvalues satisfy that λ2 + λ3 = −b and λ2λ3 = c. Since b > 0, the
condition for the real parts of λ2 and λ3 being negative is c > 0.
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