Multi-Stage Multi-Task Feature Learning

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper Supplemental

Authors

Pinghua Gong, Jieping Ye, Chang-shui Zhang

Abstract

Multi-task sparse feature learning aims to improve the generalization performance by exploiting the shared features among tasks. It has been successfully applied to many applications including computer vision and biomedical informatics. Most of the existing multi-task sparse feature learning algorithms are formulated as a convex sparse regularization problem, which is usually suboptimal, due to its looseness for approximating an $\ell_0$-type regularizer. In this paper, we propose a non-convex formulation for multi-task sparse feature learning based on a novel regularizer. To solve the non-convex optimization problem, we propose a Multi-Stage Multi-Task Feature Learning (MSMTFL) algorithm. Moreover, we present a detailed theoretical analysis showing that MSMTFL achieves a better parameter estimation error bound than the convex formulation. Empirical studies on both synthetic and real-world data sets demonstrate the effectiveness of MSMTFL in comparison with the state of the art multi-task sparse feature learning algorithms.