Supplementary Material: Multi-Stage Multi-Task Feature Learning

In this supplementary material, we provide detailed proofs for Lemmas 1-4. In our proofs, we use
several lemmas (summarized in part B) from Zhang (2010) [26].

We first introduce some notations used in the proof. Define
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where s; + k; < d with s;,k; > 1; Z; and J; are disjoint subsets of Ny with k; and s; elements
respectively (with some abuse of notation, we also let Z; be a subset of N; x {i}, depending on the

context.); A(I?’ 7, 18 a sub-matrix of A, =n"1X lT X; € R¥? with rows indexed by Z; and columns
indexed by J;.

We let wz, be a d x 1 vector with the j-th entry being wj;, if (j,7) € Z;, and 0, otherwise. We also
let Wz be a d x m matrix with (j, 7)-th entry being w;, if (j,4) € Z, and 0, otherwise.

A. Proofs of Lemmas 1-4

A.l. Proof of Lemma 1

Proof For the j-th entry of €; (j € Ny):

1

NT o - 1
€55 = - ‘(XS )> (Xiwi —yi)

SHICOR

)

(@)

where x; is the j-th column of X;. We know that the entries of d; are independent sub-Gaussian
random variables, and ||1/nx§i)||2 = ||x§i)||2/n2 < pf(1)/n. According to Lemma 5, we have
vt > 0:

Pr(leji| > t) < 2exp(—nt*/(20%pf (1)) < 2exp(—nt®/(20%p}.. (1))
Thus we obtain:
Pr([|Tloc,00 <) > 1= 2dmexp(—nt?/(20°p\, 0. (1)))-

Let ) = 2dm exp(—nt?/(202p; .. (1))) and we can obtain Eq. (10). Eq. (11) directly follows from
Lemma 8 and the following fact:
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A.2 Proof of Lemma 2
Proof The optimality condition of Eq. (2) implies that

2 “

=X (XiW; — yi) + A @ sign(w;) =0,

n
where © denotes the element-wise product; sign(w) = [sign(w),--- ,sign(wg)]?, where
sign(w;) = 1, if w; > 0; sign(w;) = —1, if w; < 0; and sign(w;) € [—1,1], otherwise. We

note that X;w; —y;, = X;w; — X;w; + X;W; — y; and we can rewrite the above equation into the
following form:

2AiAWZ‘ = _2€i — 5‘% © Slgl’l(VAVJ

10



Thus, for all v € R%, we have

d
2VTA1'AVAVi = —2VTEZ' — Z :\jivjsign(wji). (17)

j=1

Letting v = Aw; and noticing that Aw;; = wj, for (j,7) ¢ F;,i € N,,,, we obtain

d
0< QAWlTAILsz = —QA\X/'Z»TEIL' - Z :\jiijisign(wﬁ)

j=1
<2 AW |1 [l€llee — D Ajilddysign(ibyi) — Y AjiAdbjisign ;i)
(G)eF; (J,1)¢Fi
<2 AWil[llEfloo + D AjilAdbil = Y Ajiladyil
(G:1)eF; (4:0)¢F:
<2 A% [Elloe + D AjilAadgil = D Ayl
(J)EF: (4,1)€G:
<2 AW |1l + D AoilAdbil = Y Ag, byl
(G)EF: (4:1)€G:
= Y Clalle = Ag)ldsil + D 2lElsoltyil + D (2l€illoo + Aoi) | Adhyil.
(4,1)€G: (4,8) ¢ FiUGs (4,8)€F:

The last equality above is due to N, x {i} = G;U(F;UG;)°UF; and Awj; = i, V(j, i) ¢ F; 2 Gi.
Rearranging the above inequality and noticing that 2||€;||cc < Ag, < Ao;, We obtain:

S Jeigl < 2||€ifloo S g+ 2||€illoo + Aoi S Ay < 2||€z‘||oo+)\0¢HAVAV
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Then Lemma 2 can be obtained from the above inequality and the following two inequalities.
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A.3 Proof of Lemma 3

Proof According to the definition of G (G(r)), we know that F; N G; = 0 (i € Ny,) and V(j, 1) €
G (Gw)) A= Thus, all conditions of Lemma 2 are satisfied, by noticing the relationship

betwecn7E(i.z (5) and Eq. (10). Based on the definition of G (G(y)), we easily obtain Vj € Ny:
(j.i) € Gs,¥i € Ny or (4,4) ¢ Gi, Vi € N,y (19)

and hence ky = |G§| = - - - = |GS,| (k¢ is some integer). Now, we assume that at stage £ > 1:
ke =G| =---=1G,,| <27. (20)

We will show in the second part of this proof that Eq. (20) holds for all £. Based on Lemma 6 and
Eq. (4), we have:

s1/2

1/2
mi (27 +5,5) < Ty o ()7 (2 +29) — 1 2 Lo /T s](20) — 1= 0.55(20) 12,

which indicates that

0.5<t;=1-m(2F +s,5)(27)/?s7 1 < 1.
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For all ¢; € [0.5, 1], under the conditions of Eq. (5) and Eq. (10), we have
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Following Lemma 2, we have
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11 < 3HAVAVgc||171 = 3||AW - AWgHLl = SHAW —Wg
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Therefore

AW — AWz||lson = [AWG — AW 7| son

< AW ll1a/s = (|AWglla — [|AW — AWz]|11)/s

< s BIAW = Woll1a — AW — AWz|l1.1),
which implies that

[AW [[2,1 — [AWz|2,1 < [|AW — AWz]|2,1
< (|AW — AWz||11 |[AW — AWz |oc,1)*/?

. . 2 S . . 1/2
< (1AW = AWz)a) (5T BIAW = Wglla — AW = AWzl1))

. R 9 1/2
< ((3||AW—Wg||171/2> ) 5712
< (3/2)s7 1220 2| AW — Wg 2.
< (3/2)(2r/9)"?| AWz 2,1

In the above derivation, the third inequality is due to a(3b — a) < (3b/2)2, and the fourth inequality
follows from Eq. (20) and F NG = () = AWg = Wg. Rearranging the above inequality, we obtain

at stage /-
o 27 A
|AW]|2,1 < (1 + 1.5\/8> IAWZ]2,1. (21

max(0, AvAvgi A AW)

> pi (ke + s) (1AW, || — mi(ke + 5, 8)[|Wg, [|l1/5) || Awz,
> py (ke +8)[1— (1= ;)4 — t:) /(4 = 3t,)][| Aw, |2
> 0.5tp; (ke + 8)|| AWz, ||?

> 0.25p; (27 + )| Az, ||*

> 0.250,,,, (27 + 5) | Az, 1%,

From Lemma 7, we have:

where the second inequality is due to Eq. (18), that is

2)1&lloc + Aos AWl < (21€:lloo + Aoi)VEe
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the third inequality follows from 1 — (1 — ¢;)(4 — ¢;)/(4 — 3t;) > 0.5¢; for t; € [0.5,1] and the
fourth inequality follows from the assumption in Eq. (20) and ¢; > 0.5.

If AW] A;Aw; <0, then [[Awz, || = 0. If AW A;Aw; > 0, then we have

AWT A;AW; > 0.25p, . (27 + s)|| Avwz, ||. (22)

12



By letting v = Awz,, we obtain the following from Eq. (17):

2AWT, AiAW; = —2AWT & — Y NjiAdiyisign(ib;)

(4,4)€T;
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= —QAVAV%EQL_C - QAVA&’?iEji — Z /\]ZAwﬂblgn wﬂ Z /\JZ|A”LUJL| — Z /A\JL|AIZJJL|
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egell +20€mllee D 1A+ D NalAwigl — D> Ajil A
(4,1)€Ts (5,i)EF: (4,1)€Ts
1/2
< 2||Awz, ||l €ge >N [Awz ||
(J,1)eF:
1/2

(23)

<2 AW flllegell + | Y A%
(4:1)EF;

In the above derivation, the second equality is due to Z; = J;UF;U(FFNGS); the third equality is due

to Z; N G; = J;; the second inequality follows from V(j,i) € Ji, Aji = A > 2[[&illcc > 2[|€7 [0

and the last inequality follows from F; C G C Z;. Combining Eq. (22) and Eq. (23), we have

1/2
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Notice that
i1l < alllyill + llzall) = 1IX13,, < m| X5 =m > [xil* < 2ma®(|Y]5 + 1Z]3).
i

Thus, we have

l—
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Therefore, at stage ¢, Eq. (12) in Lemma 3 directly follows from Eq. (21) and Eq. (24). Following
Eq. (12), we have:

WO = Wiz = [AWO|2,,
r 7 N
(1 15/) yfom (415 13 + Sger 0 )
<
8.83/in, A Y[ |Gty | + 7mA?
<
) 8.83ymAy/ i5rm + rm _ 9Imvi
a Prnin (2T + 5) Prrin (2T + 5)
where the first inequality is due to Eq. (24); the second inequality is due to s >

7 (assumption in Theorem 1), 5\ﬂ < A\, ¥m = |H| > |F| and the third inequality follows from
Eq. (20) and || T[], ., < (1/144)\%. Therefore, Eq. (13) in Lemma 3 holds at stage /.

Notice that we obtain Lemma 3 at stage ¢, by assuming that Eq. (20) is satisfied. To prove that
Lemma 3 holds for all stages, we next need to prove by induction that Eq. (20) holds at all stages.

(24)

||AWZ||2,1 <
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When ¢ = 1, we have g(cl) = H, which implies that Eq. (20) holds. Now, we assume that Eq. (20)
holds at stage £. Thus, by hypothesis induction, we have:

c 1/ — 77(0) 1 12
\/ |g(5+1) \H| < \/mﬁ 2||Wg(c€+1)\7?¢ - Wg(”,ZJrl)\H”Q,l
0.1m?/2\ /70!
MmN < e,
pmin(zr + S)

where 0 is the thresholding parameter in Eq. (1); the first inequality above follows from the definition
of g(e) in Lemma 3:

< 0 ], <
2,1

V(5. 1) € Gloary \H, I(WO))13/6% = | (WD) —w7|3/6% > 1
c - oyt
=[G4y \ H| < mb 2||Wé(cz

- 2
\H WQFHD\H 2
the last inequality is due to Eq. (6). Thus, we have:

1GErin) \ H| <7m = [Gh )| < 2Pm = ke < 27

Therefore, Eq. (20) holds at all stages. Thus the two inequalities in Lemma 3 hold at all stages. This
completes the proof of the lemma. ]

A.4 Proof of Lemma 4

Proof The first inequality directly follows from H D F. Next, we focus on the second inequality.
For each (j,7) € F (H), if |[W? |1 < 6, by considering Eq. (3), we have

W7 =% |1 > W[l = [[W7]] > 20 — 6 = 6.
Therefore, we have for each (j,i) € F (H):
I([w ] < 0) < [[%7 = w7[|1/0.

Thus, the second inequality of Lemma 4 directly follows from the above inequality. (|

B. Lemmas from Zhang (2010) [26]

Lemma S Let a € R" be a fixed vector and x € R"™ be a random vector which is composed of
independent sub-Gaussian components with parameter o. Then we have:

Pr(la”x| > t) < 2exp (—t*/(207|a[?)), V¢t > 0.

$1/2
Lemma 6 m(k;, s;) < /i (s1)/pi (ki + 50) — 1.

Lemma 7 Let G; C Ny x {i} such that |G¢| = k;, and let J; be indices of the s; largest components
(in absolute values) of wg, and Z; = G U J;. Then for any w; € R4, we have

maX(O7W£AiWZ‘) > p; (ki + 51)(||WL

— mi(ki + si,8i)[lwg, ||l1/s0)[[wz,

Lemma 8 Let€; = [Eli, v ;Edi] = %X;T(XZWZ — yz) (’L € Nm), and 7:[1 C Ny x {Z} Under the
conditions of Assumption 1, the followings hold with probability larger than 1 — n:

€5, 17 < %o (1)) (T-A[Hi| + 2.71n(2/n)) /n.
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