Deep Gamblers: Learning to Abstain with Portfolio Theory

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental

Authors

Ziyin Liu, Zhikang Wang, Paul Pu Liang, Russ R. Salakhutdinov, Louis-Philippe Morency, Masahito Ueda

Abstract

We deal with the selective classification problem (supervised-learning problem with a rejection option), where we want to achieve the best performance at a certain level of coverage of the data. We transform the original $m$-class classification problem to (m+1)-class where the (m+1)-th class represents the model abstaining from making a prediction due to disconfidence. Inspired by portfolio theory, we propose a loss function for the selective classification problem based on the doubling rate of gambling. Minimizing this loss function corresponds naturally to maximizing the return of a horse race, where a player aims to balance between betting on an outcome (making a prediction) when confident and reserving one's winnings (abstaining) when not confident. This loss function allows us to train neural networks and characterize the disconfidence of prediction in an end-to-end fashion. In comparison with previous methods, our method requires almost no modification to the model inference algorithm or model architecture. Experiments show that our method can identify uncertainty in data points, and achieves strong results on SVHN and CIFAR10 at various coverages of the data.