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Abstract

We deal with the selective classification problem (supervised-learning problem with
a rejection option), where we want to achieve the best performance at a certain level
of coverage of the data. We transform the original m-class classification problem
to (m + 1)-class where the (m + 1)-th class represents the model abstaining from
making a prediction due to disconfidence. Inspired by portfolio theory, we propose
a loss function for the selective classification problem based on the doubling rate
of gambling. Minimizing this loss function corresponds naturally to maximizing
the return of a horse race, where a player aims to balance between betting on
an outcome (making a prediction) when confident and reserving one’s winnings
(abstaining) when not confident. This loss function allows us to train neural
networks and characterize the disconfidence of prediction in an end-to-end fashion.
In comparison with previous methods, our method requires almost no modification
to the model inference algorithm or model architecture. Experiments show that
our method can identify uncertainty in data points, and achieves strong results on
SVHN and CIFAR10 at various coverages of the data.

1 Introduction
With deep learning’s unprecedented success in fields such as image classification [21, 18, 24],
language understanding [9, 35, 42, 32], and multimodal learning [26, 33], researchers have now
begun to apply deep learning to facilitate scientific discovery in fields such as physics [2], biology [38],
chemistry [16], and healthcare [20]. However, one important challenge for applications of deep
learning to these natural science problems comes from the requirement of assessing the confidence
level in prediction. Characterizing confidence and uncertainty of model predictions is now an
active area of research [12], and being able to assess prediction confidence allows us to handpick
difficult cases and treat them separately for better performance [13] (e.g., by passing to a human
expert). Moreover, knowing uncertainty is important for fundamental machine learning research [19];
for example, many reinforcement learning algorithms (such as Thompson sampling [40]) requires
estimating uncertainty of the distribution [39].

However, there has not been any well-established, effective and efficient method to assess prediction
uncertainty of deep learning models. We believe that there are four desiderata for any framework to
assess deep learning model uncertainty. Firstly, they must be simply end-to-end trainable, because
end-to-end trainability is important for accessibility to the method. Secondly, it should require no
heavy sampling procedure because sampling a model or prediction (as in Bayesian methods) hundreds
of times is computationally heavy. Thirdly, it should not require retraining when different levels of
uncertainty are required because many tasks such as ImageNet [8] and 1 Billion Word [4] require
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Figure 1: Top-10 rejected images in the MNIST testing set found by two methods. The number above image
is the predicted uncertainty score (ours) or the entropy of the prediction (baseline). For the top-2 images, our
method chooses images that are hard to recognize, while that of the baseline can be identified unambiguously by
human.

weeks of training, which is too expensive. Lastly, it should not require any modification to existing
model architectures so that we can achieve better flexibility and minimal engineering effort. However,
most of the methods that currently exist do not meet some of the above criteria. For example,
existing Bayesian approaches, in which priors of model parameters are defined and the posteriors
are estimated using the Bayes theorem [29, 13, 34], usually rely heavily on sampling to estimate
the posterior distribution [13, 34] or modifying the network architecture via the reparametrization
trick [22, 3]. These methods therefore incur computational costs which slow down the training
process. This argument also applied to ensembling methods [25]. Selective classification methods
offer an alternative approach [5], which either require modifying model objectives and retraining the
model [14, 15]. See Table 1 for a summary of the existing methods, and the problems with these
methods are discussed in Section 3. In this paper, we follow the selective classification framework (see
Section 2), and focus on a setting where we only have a single classifier augmented with a rejection
option1. Inspired by portfolio theory in mathematical finance [30], we propose a loss function for
the selective classification problem that is easy to optimize and requires almost no modification to
existing architectures.

2 The Selective Prediction Problem
In this work, we consider a selective prediction problem setting [10]. Let X be the feature space
and Y the label space. For example, X could be the distribution of images, and Y would be the
distribution of the class labels, and our goal is to learn the conditional distribution P (Y ∣X), and a
prediction model parametrized by weight w is a function fw ∶ X → Y . The risk of the task w.r.t
to a loss function `(⋅) is EP (X,Y )[`(f(x), y)], given a dataset with size N {(xi, yi)}Ni=1 where all
(xi, yi) are independent draws from X × Y . A prediction model augmented with a rejection option
is a pair of functions (f, g) such that gh ∶X → R is a selection function which can be interpreted as a
binary qualifier for f as follow:

(f, g)(x) ∶= {f(x), if gh(x) ≥ h

ABSTAIN, otherwise
(1)

i.e., the model abstains from making a prediction when the selection function g(x) falls below a
predetermined threshold h. We call g(x) the uncertainty score of x; different methods tend to use
different g(x). The covered dataset is defined to be {x ∶ gh(x) ≥ h}, and the coverage is the ratio of
the size of covered dataset to the size of the original dataset. Clearly, one may trade-off coverage for
lower risk, and this is the motivation behind rejection option methods.

3 Related Work
Abstention Mechanisms. Here we summarize the existing methods to perform abstention, and these
are the methods we will compare with in this paper. For a summary of the features of these methods,
see table 1. Entropy Selection (ES): This is the simplest way to output an uncertainty score for
a prediction, we compare with this in the qualitative experiments. It simply takes the entropy of
the predicted probability as the uncertainty score. Softmax-Response (SR, [14]): This is a simple
yet theoretically-guaranteed strong baseline proposed in [14]. It regards the maximum predicted
probability as the confidence score; it differs from our work in that it does not involve training an

1i.e., we do not consider ensembling methods, but we note that such method can be used together with our
method and is likely to increase performance
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Ours SR [14] BD [13] SN [15]
Simple end-to-end training 3 3 3 7
No sampling process required 3 3 7 3
No retraining needed for different coverage 3 3 3 7
No modification to model architecture 3 3 3 7

Table 1: Summary of features of different methods for selective prediction. Our method is end-to-end trainable
and does not require sampling, retraining, or architecture modification.

abstention mechanism. Bayes Dropout (BD, [13]): This is a SOTA Bayesian method that offer a
way to reject uncertain images [13]. One problem with with method is that one often needs about
extensive sampling to obtain an accurate estimation of the uncertainty. SelectiveNet (SN, [15]): This
is a very recent work that also trains a network to predict its uncertainty, and is the current SOTA
method of the selective prediction problem. The loss function of this method requires interior point
method to optimize and depends on the target coverage one wants to achieve.

Portfolio Theory and Gambling The Modern Portfolio Theory (MPT) is a modern method in
investment for assembling a portfolio of assets that maximizes expected return while minimizing
the risk [30]. The generalized portfolio theory is a constrained minimization problem in which we
sought for maximum expected return with a variance constraint. In this work, however, we explore
a very limited form of portfolio theory that can be seen as a horse race, as a proof of concept for
bridging uncertainty in deep learning and portfolio theory. In this work, we focus on the classification
problem, and we believe that regression problems can similarly be reformulated as a general portfolio
problem, and we leave this line of research to the future. The connection between portfolio theory,
gambling and information theory is studied in [6, 7]. Some of the theoretical arguments presented in
this work are based on arguments given in [7].

4 Learning to Abstain with Portfolio Theory
The intuition behind the method is that a deep learning model learning to abstain from prediction
indeed mimicks a gambler learning to reserve betting in a game. Indeed, we show that if we have a
m-class classification problem, we can instead perform a m + 1 class classification which predicts
the probabilities of the m classes and use the (m + 1)-th class as an additional rejection score. This
method is similar to [14, 15], and the difference lies in how we learn such a model. We use ideas
from portfolio theory which says that if we have some budget, we should split them between how
much we would like to bet, and how much to save. In the following sections, we first provide a gentle
introduction to portfolio theory which will provide the mathematical foundations of our method.
We then describe how to adapt portfolio theory for classification problems in machine learning and
derive our adapted loss function that trains a model to predict a rejection score. We finally prove
some theoretical properties of our method to show that a classification problem can indeed be seen as
a gambling problem, and thus avoiding a bet in gambling can indeed been interpreted as giving a
rejection score.

4.1 A Short Introduction to General Portfolio Theory

Portfolio Theory Deep Learning
Portfolio Prediction

Doubling Rate negative NLL loss
Stock/Horse input data point

Stock Market Outcome Target Label
Horse Race Outcome Target Label

Reservation in Gamble Abstention

Table 2: Portfolio Theory - Deep Learning Dictionary.

To keep the terminology clear, we give a
chart of the terms from portfolio theory and
their corresponding concepts in deep learn-
ing in Table 2. The rows in the dictionary
show the correspondences we are going to
make in this section. In short, portfolio the-
ory tells us what is the best way to invest
in a stock market. A stock market with m
stocks is a vector of positive real numbers
X = (X1, ...,Xm), and we define the price
relaive Xi as the ratio of the price of the stock i at the end of the day to the price at the beginning
of the day. For example, Xi = 0.95 means that the price of the stock is 0.95 times its price at the
beginning of the day. We formulate the price vector as a vector of random variables drawn from a joint
distribution X ∼ P (X). A portfolio refers to our investment in this stock market, and can be modeled
as a discrete distribution b = (b1, ..., bm) where bi ≥ 0 and ∑i bi = 1, and b is our distributing of
wealth to X. In this formulation, the wealth relative at the end of the day is S = bTX = ∑i biXi; this
tell us the ratio of our wealth at the end of the day to our wealth at the beginning of the day.
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Definition 1. The doubling rate of a stock market portfolio b with respect to a stock distribution
P (X) is

W (b, P ) = ∫ log2 (bTx)dP (x).

This tells us the speed at which our wealth increases, and we want to maximize W . Now we consider
a simplified version of portfolio theory called the “horse race".

4.2 Horse Race
Different from a stock market, a horse race has an exclusive outcome (only one horse wins, and it’s
either win or loss) x(j) = (0, ...,0,1,0, ...,0), which is a one-hot vector on the j -th entry. In a horse
race, we want to bet on m horses, and the i-th horse wins with probability pi, and the payoff is oi for
betting 1 dollar on horse i if i wins, and the payoff is 0 otherwise. Now the gambler can choose to
distribute his wealth over the m horses, according to o and p, and let b denote such distribution; this
corresponds to choosing a portfolio. Again, we require that bi ≥ 0, and ∑i bi = 1. The wealth relative
of the gambler at the end of the game will be S(x(j)) = bjoj when the horse j wins. After n many
races, our wealth relative would be:

Sn =
n

∏
i=1

S(xi). (2)

Notice that our relative wealth after n races does not depend on the order of the occurrence of the
result of each race (and this will justify our treatment of a batch of samples as races). We can define
the doubling rate by changing the integral to a sum:
Definition 2. The doubling rate of a horse race is

W (b,p) = E log2(S) =
m

∑
i=1

pi log2(bioi).

As before, we want to maximize the doubling rate. Notice that if we take oi = 1 and bi be the
post-softmax output of our model, then W is equivalent to the commonly used cross-entropy loss
in classification. However, a horse race can be more general because the gambler can choose to bet
only with part of his money and reserve the rest to minimize risk. This means that, in a horse race
with reservation, we can bet on m + 1 categories where the m + 1-th category denotes reservation
with payoff 1. Now the wealth relative after a race becomes S(xj) = bjoj + bm+1 and our objective
becomes maxbW (b,p), where

maxW (b,p) =
m

∑
i=1

pi log(bioi + bm+1). (3)

This is the gambler’s loss.

4.3 Classification as a Horse Race
An m-class classification task can be seen as finding a function f ∶ Rn → Rm, where n is the input
dimension and m is the number of classes. For an output f(x), we assume that it is normalized, and
we treat the output of f(⋅) as the probability of input x being labeled in class j:

Pr(j∣x) = f(x)j (4)

Now, let us parametrize the function f as a neural network with parameter w, whose output is a
distribution over the class labels. We want to maximize the log probability of the true label j:

maxE[log p(j∣x)] = max
w

E[log fw(x)j] (5)

For a m-class classification task, we transform it to a horse race with reservation by adding a m+1-th
class, which stands for reservation. The objective function for a mini-batch of size B, and for constant
o over all categories is then (cf. Equation 3)

max
f

W (b(f),p) = max
w

B

∑
i

log [fw(xi)j(i)o + fw(xi)m+1]. (6)

where i is the index over the batch, and j(i) is the label of the i-th data point. As previously remarked,
if oj = 1 for all j and bm+1 = 0, we recover the standard supervised classification task. Therefore o
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becomes a hyperparameter, and a higher o encourages the network to be confident in inferring, and a
low o makes it less confident. In the next section, we will show that the problem is only meaningful
for 1 < o < m. The selection function g(⋅) is then fw(⋅)m+1(cf. Equation 1), and prediction on
different coverage can be achieved by simply calibrating the threshhold h on a validation set. Also
notice that an advantage of our method over the current SOTA method [15] is that our loss function
does not depend on the coverage.

5 Information Theoretic Analysis
In this section, we analyze our formulation theoretically to explain how our method works. In the
first theorem, we show that for a horce race without reservation, its optimal solution exists. We
then show that, in a setting (gambling with side information) that resembles an actual classification
problem, the optimal solution also exists, and it is the same as the optimal solution we expect for
a classification problem. The last theorem deals with the possible range of o for a horse race with
reservation, followed by a discussion about we should choose the hyperparameter o.

In the problem setting, we considered a gambling problem that is probabilistic in nature. It corresponds
to a horse race in which, the distribution of winning horses is drawn from a predetermined distribution
P (Y ) and no other information besides the indices of the horse is given. In this case, we show that
the optimal solution should be proportional to P (Y ) when no reservation is allowed.
Theorem 1. The optimal doubling rate is given by

W ∗(p) =∑
i

pi log oi −H(p). (7)

where H(p) = −∑p log p is the entropy of the distribution p, and this rate is achieved by proportional
gambling b∗ = p.

This result shows the equivalence between a prediction problem and a gambling problem. In fact,
trying to minimize the natural log loss for a classification task is the same as trying to maximize
the doubling rate in a gambling problem. However, in practice, we are often in a horse race where
some information about the horse is known. For example, in the “MNIST" horse race, one sees a
picture, and want to guess its category, i.e., one has access to side information. In the next theorem,
we show that in a gambling game with side information, the optimal gambling strategy is obtained
by a prediction that maximizes the mutual information between the horse (image) and the outcome
(label). This is a classical theorem that can be found in [7]. The proofs are given in the appendix.
Theorem 2. Let W denote the doubling rate defined in Def. 2. For a horse race Y to which some
side information X is given, the amount of increase ∆W is

∆W = I(X;Y ) =∑
x,y

p(x, y) log
p(x, y)
p(x)p(y) . (8)

This shows that the increase in the doubling rate from knowing X is bounded by the mutual
information between the two. This means that the neural network, during training, will have to
maximize the mutual information between the prediction and the true label of the sample. This shows
that an image classification problem is exactly equal to a horse race with side information. However,
the next theorem makes our formulation different from a standard classification task and can be seen
as a generalization of it. We show that, when reservation is allowed, the optimal strategy changes
with o, the return of winning. Especially, for some range of o, only trivial solutions to the gambling
problem exist. Since the tasks in this work only deals with situations in which o is uniform across
categories, we assume o to be uniform for clarity.
Theorem 3. Let m be the number of horses, and let W be defined as in Eq. 3, and let oi = o for all i;
then if o > m, the optimal betting always have bm+1 = 0; if o < 1, then the optimal betting always
have bi = 0 for i ≠m + 1.

This theorem tells us that when the return from betting is too high (o >m), then we should always
bet, and so the optimal solution is given by Theorem 1; when the return from betting is too low
(o < 1), then we should always reserve. A more realistic situation should have that 1 < o < m,
which reflects the fact that, while one might expect to gain in a horse race, the organizer of the game
takes a cut of the bets. We discuss the effect of varying o in the appendix (section 11.1). In fact,
the optimal rejection score of to a given prediction probability of our method can be easily found
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(a) Training Set (b) h = 0.999 (c) h = 0.99 (d) h = 0.9 (e) h = 0.5
Figure 2: Output of the network. h is the threshold, and yellow points are rejected points at this level of h.

(a) Testing Set (b) entropy based (c) deep gamblers
Figure 3: Identifying the outlier distribution. h is chosen to be the largest value such that the outlier cluster is
rejected. We see that a network trainied with our method rejects the outlier cluster much earlier than the entropy
based method.

using Kuhn-Tucker condition without training the network, but we argue that it is not the learned
rejection score that is the core of method, but that this loss function allows the trained model to learn
a qualitatively different and better hidden representation than the baseline model. See Figure 5 (and
appendix).

6 Experiments

We begin with some toy experiments to demonstrate that our method can deal with various kinds of
uncertain inputs. We then compare the existing methods in selective classification and show that the
proposed method is very competitive against the SOTA method. Implementation details are in the
appendix.

6.1 Synthetic Gaussian Dataset

In this section, we train a network with 2 hidden layers each with 50 neurons and tanh activation.
For the training set, we generate 2 overlapping diagonal 2d-Gaussian distributions and the task is
a simple binary classification. Cluster 1 has mean (1,1) and unit variance, and cluster 2 has mean
(−1,−1) with unit variance. The fact that these two clusters are not linearly separable is the first
source of uncertainty. A third out-of-distribution cluster exists only in the testing set to study how the
model deals with out-of-distribution samples. This distribution has mean (5,−5) and variance 0.5.
This is the second source of uncertainty. Figure 2(a) shows the training set and 3(a) shows the test set.

We gradually decrease the threshold h for the predicted disconfident score, and label the points above
the threshold as rejected. These results are visualized in Figure 2 and we observe that the model
correctly identifies the border of the two Gaussian distributions as the uncertain region. We also see
that, by lowering the threshold, the width of the uncertain region increases. This shows how we might
calibrate threshold h to control coverage. Now we study how the model deals with out-of-distribution
uncertainty. From Figure 3, we see that the entropy based selection is only able to reject the third
cluster when most of data points are excluded, while our method seems to reject the outliers equally
well with the boundary points.

6.2 Locating the outlier testing images of MNIST

In this section, we show the images that our method finds the most disconfident in MNIST in
comparison with the entropy selection method in Figure 1. The model is a simple 4-layer CNN. We
find that our method seems to outperform the baseline qualitatively. For example, the two least certain
images found by the entropy based method can be labeled by a human unambiguously as a 2 and 7,
while the top-2 images found by our method do not look like images of numbers at all. Most figures
of this experiment and plots of how the images change across different epochs can be found in the
appendix.
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Figure 4: Rotating an image of 9 by 180 degrees. The number above the images are the prediction label of the
rotated image.

Coverage Ours Ours SR BD SN(Best Single Model) (Best per coverage)
1.00 o=2.63.24 ± 0.09 − 3.21 3.21 3.21
0.95 o=2.61.36 ± 0.02 o=2.61.36 ± 0.02 1.39 1.40 1.40
0.90 o=2.60.76 ± 0.05 o=2.60.76 ± 0.05 0.89 0.90 0.82 ± 0.01
0.85 o=2.60.57 ± 0.07 o=3.60.66 ± 0.01 0.70 0.71 0.60 ± 0.01
0.80 o=2.60.51 ± 0.05 o=3.60.53 ± 0.04 0.61 0.61 0.53 ± 0.01

Table 3: SVHN. The number is error percentage on the covered dataset; the lower the better. We see that our
method achieved competitive results across all coverages. It is the SOTA method at coverage (0.85,1.00).

6.3 Rotating an MNIST image
For illustration, we choose an image of 9 and rotate it up to 180 degrees because a number 9 looks
like a distorted 5 when rotated by 90 degrees and looks like a 6 when rotated by 180, which allows
us to analyze the behavior of the model clearly. See figure 4. We see that the model assesses its
disconfidence as we expected, labeling the image as 9 at the beginning and 6 at the end, and as a 5
with high uncertainty in an intermediate region. We also notice that the uncertainty score has two
peaks corresponding to crossing of decision boundaries. This suggests that the model has really
learned to assess uncertainty in a subtle and meaningful way (also see Figure 5).

6.4 Comparison with Existing Methods
In this section, we compare with the SOTA methods in selective classification. The experiment is
performed on SVHN [31] (Table 3), CIFAR10 [23] (Table 4) and Cat vs. Dog (Table 5). We follow
exactly the experimental setting in [15] to allow for fair comparison. We use a version of VGG16
that is especially optimized for small datasets [27] with batchnorm and dropout. The baselines we
compare against are given in Section 3 and summarized in Table 1. A grid search is done over
hyperparameter o with a step size of 0.2. The best models of ours for a given coverage are chosen
using a validation set, which is separated from the test set by a fixed random seed, and the best single
model is chosen by using the model that achieves overall best validation accuracy. To report error
bars, we estimate its standard deviation using the test errors on neighbouring 3 hyperparameter o
values in our grid search (e.g. for o = 6.5, the results from o = 6.3,6.5,6.7 are used to compute the
variance).

The results for the baselines are cited from [15], and we show the error bar for the contender models
when it overlaps or seem to overlap with our confidence interval. We see that our model achieves
SOTA on SVHN on all coverages, in the sense that our model starts at full coverage with a slightly
lower accuracy but starts to outperform other contenders starting from 0.95 coverage, meaning that it
learned to identify the hard images better than its contenders. We also perform the experiment on
CIFAR-10 and Cat vs. Dog datasets, and we see that our method achieves very strong results. A
small problem for the comparison remains since our models have different full coverage performance
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Coverage Ours Ours SR BD SN(Single Best Model) (Best per Coverage)
1.00 o=2.26.12 ± 0.09 − 6.79 6.79 6.79
0.95 o=2.23.49 ± 0.15 o=6.03.76 ± 0.12 4.55 4.58 4.16
0.90 o=2.22.19 ± 0.12 o=6.02.29 ± 0.11 2.89 2.92 2.43
0.85 o=2.21.09 ± 0.15 o=2.01.24 ± 0.15 1.78 1.82 1.43
0.80 o=2.20.66 ± 0.11 o=2.20.66 ± 0.11 1.05 1.08 0.86
0.75 o=2.20.52 ± 0.03 o=2.20.52 ± 0.03 0.63 0.66 0.48 ± 0.02
0.70 o=2.20.43 ± 0.07 o=2.20.43 ± 0.07 0.42 0.43 0.32 ± 0.01

Table 4: CIFAR10. The number is error percentage on the covered dataset; the lower the better. We see that the
superior performance of our method is seen again for another dataset.

Coverage Ours Ours SR BD SN(Single Best Model) (Best per Coverage)
1.00 o=2.02.93 ± 0.17 − 3.58 3.58 3.58
0.95 o=2.01.23 ± 0.12 o=1.40.88 ± 0.38 1.91 1.92 1.62
0.90 o=2.00.59 ± 0.13 o=2.00.59 ± 0.13 1.10 1.10 0.93
0.85 o=2.00.47 ± 0.10 o=1.20.24 ± 0.10 0.82 0.78 0.56
0.80 o=2.00.46 ± 0.08 o=2.00.46 ± 0.08 0.68 0.55 0.35 ± 0.09

Table 5: Cats vs. Dogs. The number is error percentage on the covered dataset; the lower the better. This dataset
is a binary classification, and the input images have larger resolution.

from other methods, but a closer look suggests that our method performs indeed better when the
coverage is in the range [0.8,1.0) (by comparing the relative improvements). Below 0.8 coverage,
the comparison becomes hard since there are only few images remaining, and methods on different
dataset show misleading performance: on Cats vs. Dogs for 0.8 coverage, statistical fluctuation
caused the validated best model to be one of the worst models on test set.

7 Discussion and Conclusion

(a) Normal Model (b) Deep Gambler
Figure 5: t-SNE plot of the second-to-last layer
output of a baseline and a deep gambler model for
MNIST. Best viewed in color and zoomed-in. The
deep gambler model learned a representation that is
more separable.

In this work, we have proposed an end-to-end
method to augment the standard supervised clas-
sification problem with a rejection option. The pro-
posed method works competitively against the cur-
rent SOTA [15] but is simpler and more flexible,
while outperforming the runner-up SOTA model
[14]. We hypothesize that this is because that our
model has learned a qualitatively better hidden rep-
resentation of the data. In Figure 5, we plot the
t-SNE plots of a regular model and a model trained
with our loss function (more plots in Appendix).
We see that, for the baseline, 6 of the clusters of
the hidden representation are not easily separable
(circled clusters), while a deep gambler model learned a representation with a large margin, which is
often associated with superior performance [11, 28, 17].

It seems that there are many possible future directions this work might lead to. One possibility is to
use it in scientific fields. For example, neural networks have been used in the classifying neutrinos,
and if we do classification on a subset of the data but with higher confidence level, then we can better
bound the frequency of neutrino oscillation, which is an important frontier in physics that will help
us understand the fundamental laws of the universe [1]. This methods also seems to offer a way to
interpret how a deep learning model learns. We can show the top rejected data points at different
epochs to study what are the problems that the model finds difficult at different stages of training.
Two other areas our method might also turn out to be helpful are robustness against adversarial attacks
[37] and learning in the presence of label noise [36, 41]. This work also gives a way incorporate
ideas from portfolio theory to deep learning. We hope this work will inspire further research in this
direction.

8



Acknowledgements: Liu Ziyin thanks Mr. Zongping Gong for buying him drink sometimes, during
the writing of this paper; he also thanks the GSSS scholarship at the University of Tokyo for supporting
his graduate study. Z. T. Wang is supported by Global Science Graduate Course (GSGC) program
of the University of Tokyo. This material is based upon work partially supported by the National
Science Foundation (Awards #1734868,#1722822) and National Institutes of Health. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of National Science Foundation or National Institutes of
Health, and no official endorsement should be inferred. Also, This work was supported by KAKENHI
Grant No. JP18H01145 and a Grant-in-Aid for Scientific Research on Innovative Areas “Topological
Materials Science” (KAKENHI Grant No. JP15H05855) from the Japan Society for the Promotion
of Science.

References
[1] K. Abe, Y. Hayato, T. Iida, K. Iyogi, J. Kameda, Y. Koshio, Y. Kozuma, Ll. Marti, M. Miura,

S. Moriyama, M. Nakahata, S. Nakayama, Y. Obayashi, H. Sekiya, M. Shiozawa, Y. Suzuki,
A. Takeda, Y. Takenaga, K. Ueno, K. Ueshima, S. Yamada, T. Yokozawa, C. Ishihara, H. Kaji,
T. Kajita, K. Kaneyuki, K. P. Lee, T. McLachlan, K. Okumura, Y. Shimizu, N. Tanimoto,
L. Labarga, E. Kearns, M. Litos, J. L. Raaf, J. L. Stone, L. R. Sulak, M. Goldhaber, K. Bays,
W. R. Kropp, S. Mine, C. Regis, A. Renshaw, M. B. Smy, H. W. Sobel, K. S. Ganezer,
J. Hill, W. E. Keig, J. S. Jang, J. Y. Kim, I. T. Lim, J. B. Albert, K. Scholberg, C. W. Walter,
R. Wendell, T. M. Wongjirad, T. Ishizuka, S. Tasaka, J. G. Learned, S. Matsuno, S. N. Smith,
T. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, K. Nakamura, K. Nishikawa,
Y. Oyama, K. Sakashita, T. Sekiguchi, T. Tsukamoto, A. T. Suzuki, Y. Takeuchi, M. Ikeda,
A. Minamino, T. Nakaya, Y. Fukuda, Y. Itow, G. Mitsuka, T. Tanaka, C. K. Jung, G. D. Lopez,
I. Taylor, C. Yanagisawa, H. Ishino, A. Kibayashi, S. Mino, T. Mori, M. Sakuda, H. Toyota,
Y. Kuno, M. Yoshida, S. B. Kim, B. S. Yang, H. Okazawa, Y. Choi, K. Nishijima, M. Koshiba,
M. Yokoyama, Y. Totsuka, K. Martens, J. Schuemann, M. R. Vagins, S. Chen, Y. Heng, Z. Yang,
H. Zhang, D. Kielczewska, P. Mijakowski, K. Connolly, M. Dziomba, E. Thrane, and R. J.
Wilkes. Evidence for the appearance of atmospheric tau neutrinos in super-kamiokande. Phys.
Rev. Lett., 110:181802, May 2013.

[2] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5:4308, 2014.

[3] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[4] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and
Tony Robinson. One billion word benchmark for measuring progress in statistical language
modeling. arXiv preprint arXiv:1312.3005, 2013.

[5] Chi-Keung Chow. An optimum character recognition system using decision functions. IRE
Transactions on Electronic Computers, (4):247–254, 1957.

[6] Thomas M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29, 1991.

[7] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA, 2006.

[8] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. Imagenet: A large-scale
hierarchical image database. In In CVPR, 2009.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[10] Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification. Journal
of Machine Learning Research, 11(May):1605–1641, 2010.

[11] Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large
margin deep networks for classification. In Advances in Neural Information Processing Systems,
pages 842–852, 2018.

9



[12] Yarin Gal. Uncertainty in deep learning. 2016.

[13] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. arXiv e-prints, page arXiv:1506.02142, June 2015.

[14] Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. In
Advances in neural information processing systems, pages 4878–4887, 2017.

[15] Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated
reject option. arXiv preprint arXiv:1901.09192, 2019.

[16] Garrett B Goh, Nathan O Hodas, and Abhinav Vishnu. Deep learning for computational
chemistry. Journal of computational chemistry, 38(16):1291–1307, 2017.

[17] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[19] Yotam Hechtlinger, Barnabás Póczos, and Larry Wasserman. Cautious deep learning. arXiv
preprint arXiv:1805.09460, 2018.

[20] Geoffrey Hinton. Deep learning—a technology with the potential to transform health care.
Jama, 320(11):1101–1102, 2018.

[21] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016.

[22] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[23] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research).

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[25] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, pages 6402–6413, 2017.

[26] Paul Pu Liang, Ziyin Liu, Amir Zadeh, and Louis-Philippe Morency. Multimodal language
analysis with recurrent multistage fusion. arXiv preprint arXiv:1808.03920, 2018.

[27] Shuying Liu and Weihong Deng. Very deep convolutional neural network based image clas-
sification using small training sample size. In 2015 3rd IAPR Asian conference on pattern
recognition (ACPR), pages 730–734. IEEE, 2015.

[28] Weiyang Liu. Large-margin softmax loss for convolutional neural networks.

[29] David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

[30] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

[31] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011, 2011.

[32] Graham Neubig. Neural machine translation and sequence-to-sequence models: A tutorial.
arXiv preprint arXiv:1703.01619, 2017.

10



[33] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng.
Multimodal deep learning. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 689–696, 2011.

[34] Tim Pearce, Mohamed Zaki, Alexandra Brintrup, and Andy Neel. Uncertainty in neural
networks: Bayesian ensembling. arXiv preprint arXiv:1810.05546, 2018.

[35] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[36] David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to massive
label noise. arXiv preprint arXiv:1705.10694, 2017.

[37] Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and inter-
pretability of deep neural networks by regularizing their input gradients. In Thirty-second AAAI
conference on artificial intelligence, 2018.

[38] João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical micro-
circuits approximate the backpropagation algorithm. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 31, pages 8721–8732. Curran Associates, Inc., 2018.

[39] Csaba Szepesvári. Algorithms for reinforcement learning. 2009.

[40] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[41] Arash Vahdat. Toward robustness against label noise in training deep discriminative neural
networks. In Advances in Neural Information Processing Systems, pages 5596–5605, 2017.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

11



Appendix

8 A practitioner’s guide to our method

8.1 Implementation

We give a summary of our proposed method here such that the method can be implemented only
reading this section. For a m-class classification problem, we propose to change the cross entropy
loss to the following modified one:

m

∑
i=1

pi log(p̂i)→
m

∑
i=1

pi log(p̂i +
1

o
p̂m+1) (9)

where p̂i denotes the output prediction of the model for label i , and the constraint ∑m+1
i=1 p̂i = 1 is

explicitly enforced by a softmax function over the pre-softmax values; o is a hyperparameter that
one can tune, which should be equal to or smaller than m but larger than 1. p̂m+1 is the augmented
rejection score predicted by the model. For neural networks, this amounts to changing the output
dimension from m to m + 1, and using the loss function above to train the rejection score pm+1. All
other settings of training may be kept the same. The gambler’s loss can be written in Pytorch as the
following lines:

def gambler_loss(model_output, targets):
outputs = torch.nn.functional.softmax(model_output, dim=1)
outputs, reservation = outputs[:,:-1], outputs[:,-1]
gain = torch.gather(outputs, dim=1, index=targets.unsqueeze(1)) \

.squeeze()
doubling_rate = (gain+reservation/reward).log()
return -doubling_rate.mean()

8.2 Optimizing the deep gambler’s Objective

When training the neural network models, we experimentally found that if o is overly small, the
neural network sometimes fails to learn from the training data and converges to a trivial point, which
only predicts to abstain, especially on more difficult datasets such as CIFAR10. On CIFAR10, in
our grid search experiments, when o < 6.3 the trained neural network converged trivially, and when
o ≥ 6.3 the trained model performed at least as well as the ones trained in usual ways. Therefore, in
order to converge non-trivially with o < 6.3 values, it can be trained with usual cross entropy loss
for several epochs in the beginning, and changed to our proposed loss later. This training schedule
works well and produces prediction accuracy comparable to large o values. On dataset CIFAR 10,
we trained our model with usual cross entropy loss for the first 100 epochs when o < 6.3 ; on dataset
SVHN, we trained with cross entropy for the first 50 epochs when o < 6.0 ; on dataset Cats vs Dogs,
we trained with cross entropy for the first 50 epochs for all o values.

9 Theorem Proofs

Theorem. The optimal doubling rate is given by:

W ∗(p) =∑pi log oi −H(p) (10)

where H(p) = −∑p log p is the entropy of the distribution p, and this rate is achieved by proportional
gambling b∗ = p.

Proof. we have
W (b,p) =∑

i

pi log(bioi)

= −H(p) −D(p∣∣b) +∑
i

pi log oi

≤∑
i

pi log oi −H(p)

and the equality only holds when b = p.
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Theorem. Let W denote the doubling rate given in Def. 2. For a horse race X to which some side
information Y is given, the increase ∆W is:

∆W = I(X;Y ) =∑
x,y

p(x, y) log
p(x, y)
p(x)p(y) . (11)

Proof. Simply modifying the proof above, it is easy to show that the optimal gambling strategy with
side information Y is obtained also by proportional gambling b(x∣y) = p(x∣y). By definition:

W ∗(X ∣Y ) = max
b(x∣y)

∑p(x, y) log(o(x)b(x∣y))

=∑p(x, y) log(o(x)p(x∣y))
= −H(X ∣Y ) +∑p(x) log o(x)

comparing with the doubling rate without side information, we see that the change in doubling rate is:

∆W =W ∗(X ∣Y ) −W ∗(X) =H(X) −H(X ∣Y ) = I(X;Y )

and we are done.

Theorem. Let m be the number of horses, and let the W be defined as in Eq. 3, and let oi = o for
all i, then if o ≥m, then the optimal betting always have bm+1 = 0; if 0 ≤ 1, then the optimal betting
always have bm+1 = ∣∣b∣∣1.

Proof. (1) We first consider the case o < 1, we want to show that the optimal solution is to always
reserve (i.e. bi = 0 for i ∈ {1, ...,m}). Suppose that there exist a solution where bi ≠ 0, then the
expected return of this part of the bet is then oipibi, since pi ≤ 1, pioibi < 1 = bi. This shows that if
we instead distribute bi percentage of our wealth to bm+1, then we will achieve better result.

(2) Now we show that for the case o >m, we should have bm+1 = 0. Again, we adopt similar strategy
by showing that if there is a solution for which bm+1 ≠ 0, then we can always find a solution better
than this. Let bm+1 ≠ 0, and we compare this with a solution in which we distribute bm+1 evenly to
categories 1 to m, the difference in return is:

m

∑
i=1

pibm+1o

m
− bm+1 =

bm+1o

m

m

∑
i=1

pi − bm+1 = bm+1
o

m
− bm+1 > 0

since bm+1 >m, and we are done.

10 Experiment Detail

For all of our experiments, we use the PyTorch framework2. The version is 1.0. We will release the
code of our paper at http://********.

10.1 Datasets

Street View House Numbers (SVHN). The SVHN dataset is an image classification dataset con-
taining 73,257 training images and 26,032 test images divided into 10 classes. The images are digits
of house street numbers. Image size is 32 × 32 × 3 pixels. We use the official dataset downloaded by
Pytorch utilities.

CIFAR-10. The CIFAR10 dataset is an image classification dataset comprising a training set of
50,000 training images and 10,000 test images divided into 10 categories. The image size is
32 × 32 × 3 pixels. We use the official dataset downloaded by Pytorch.

Cats vs. Dogs. The Cats vs. Dogs dataset is an image binary classification dataset comprising a set
of 25,000 images3. As in [15], we randomly choose 20,000 images as training set and 5000 images
as testing set. We resize the size of the images to 64 × 64 × 3.

2https://pytorch.org/
3https://www.kaggle.com/c/dogs-vs-cats/overview
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Figure 6: Error on CIFAR-10 for coverage 0.7 and 0.8 for different o. o values below this region
require cross entropy loss pretraining to proceed normally, and the results deviate from the above
trend lines.

10.2 Experiment Setting Details

We follow exactly the experiment setting in [15] and the details are checked against the open source
code in [15]. The grid search is done over hyperparameter o with a step size of 0.2, and the best
models of ours for a given coverage are chosen using a validation set. The grid search of o is from 2
to 9.8 on CIFAR-10, from 2 to 8 on SVHN, and from 1.2 to 2 on Cats vs. Dogs. The validation set
sizes for SVHN, CIFAR-10 and Cats vs. Dogs are respectively 5000, 2000 and 2000. The standard
deviations are estimated by test errors on neighbouring 3 hyperparameter o values in the grid search.4

11 Additional Experimental Results

11.1 Tuning the hyperparameter

The only hyperparameter we introduced is o, of which a larger value encourages the model to be less
reserved. In this section, we show that o is correlated to the performance of the model at a given
coverage and thus is a very meaningful parameter. See figure 6. We see that a lower o causes the
model to learn to reject better, but with a larger variance. This suggests that tuning o for different
tasks and needs is beneficial. Especially, when o is close to 1, the trained model does not converge to
a small training error, and this training error is comparable to its test error. In this case, its resultant
total test error rate is increased. However, when o is large, the model does not learn to perform well
at low coverages, because the trained abstention score is overly small and affected by numerical
error. Therefore, there is a trade-off between total error and error at low coverages, and tuning o is
indeed meaningful. Moreover, an appropriate o value encourages the model to learn more from its
certain data and learn less from its uncertain data, when compared to the usual cross entropy loss.
We believe this is the reason that many of our validated best models outperform the accuracy of the
baseline models that use cross entropy loss, even when we train exactly the same models using the
same Pytorch package. Therefore, in most situations the best performance is achieved when o is
either small or large.

11.2 Top-30 Least Certain Images

Here we plot top-30 least certain images in the MNIST training set identified by a trained 4-layer
CNN using our method. We also show that how this list changes at epoch 1,10,30. By doing this, we
can understand what are the images that the network finds the hardest to identify at different stages of
training. We note that the model converges at about 10 epoch.

4The code to this work is available at:
https://github.com/Z-T-WANG/NIPS2019DeepGamblers
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Figure 7: Epoch 1. The top-30 images in the MNIST testing set found by Deep Gamblers, with the
uncertainty score at the top.

Figure 8: Epoch 10. The top-30 images in the MNIST testing set found by Deep Gamblers, with the
uncertainty score at the top.

Figure 9: Epoch 30. The top-30 images in the MNIST testing set found by Deep Gamblers, with the
uncertainty score at the top.
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(a) Normal Model (b) Deep Gambler
Figure 10: t-SNE plot of a normal model and the same model trained using our loss function.

(a) h set to reject 30 points (b) h set to reject 100 points
Figure 11: t-SNE plot of a regular deep model with different h.

11.3 t-SNE Plots

The experiment is done on MNIST with a 4-layer CNN model trained until convergence (10 epochs).
The t-SNE (we used sklearn and its default parameters) plot is based on the output of the second-
to-last layer. The raw t-SNE of the two models are in Figure 10. The points rejected by SR on the
simple model is given in Figure 11 and that by a deep gambler model is in Figure 12. We see the the
normal model has not learned a representation that is easily separable (circled clusters), while a deep
gambler model learned a representation with a large margin, which is often associated with superior
performance [11, 28, 17]. From the plot, we notice that the baseline model seems to have mixed up 4
with 9, 3 with 5, and 2 with 7. More interestingly, we also note that we can also use the SR method on
a deep gambler model, and we notice that in this case the rejected points are almost always the same.
Suggesting that the reason for our superior performance is due to learning a better representation.
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(a) h set to reject 30 points (b) h set to reject 100 points
Figure 12: t-SNE plot of a deep gambler model with different h.
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