Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews Supplemental

Authors

Saurabh Verma, Zhi-Li Zhang

Abstract

For the purpose of learning on graphs, we hunt for a graph feature representation that exhibit certain uniqueness, stability and sparsity properties while also being amenable to fast computation. This leads to the discovery of family of graph spectral distances (denoted as FGSD) and their based graph feature representations, which we prove to possess most of these desired properties. To both evaluate the quality of graph features produced by FGSD and demonstrate their utility, we apply them to the graph classification problem. Through extensive experiments, we show that a simple SVM based classification algorithm, driven with our powerful FGSD based graph features, significantly outperforms all the more sophisticated state-of-art algorithms on the unlabeled node datasets in terms of both accuracy and speed; it also yields very competitive results on the labeled datasets - despite the fact it does not utilize any node label information.