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1 Proof of Theorem 1

Notations: Let G = (V,E,W ) be an undirected graph with vertex set V , edge set E, and W as a
(symmetric) nonnegative weighted adjacency (affinity) matrix. In particular, Wij = W (i, j) > 0 if
and only if (i, j) ∈ E. We will assume G is connected for all proofs unless mentioned otherwise.
The (standard) graph Laplacian is defined as L = D −W , where D = diag[d1, .., dn] and di =
d(i) =

∑n
j 6=iW (i, j) the (weighted) degree of node i. L is semi-definite and admits an eigenvalue

decomposition of the form L = ΦΛΦT , where Λ = diag[λk] is the diagonal matrix formed by the
eigenvalues λ0 = 0 < λ1 ≤ · · · ≤ λN−1, and Φ = [φ0, ..., φN−1] is an orthogonal matrix formed
by the corresponding eigenvectors φk’s. For x ∈ V , we use φk(x) to denote the x-entry value of
φk. Let f be an arbitrary nonnegative (real-analytical) function on R+ with f(0) = 0. Then f(L) is
defined as f(L) = Φf(Λ)ΦT . In addition, let 1 = [1, 1, ..., 1]T =

√
Nφ0 be all-one column vector,

J = 11T = Nφ0φ
T
0 . For any matrix M , we use diag(M) to denote a diagonal matrix consisting of

the diagonal entries of M , namely, diag(M) = diag[M00,M11, . . . ,MN−1,N−1]. For conciseness,
we will drop subscript f when context is clear.

Proof: We first note that the graph f -spectral distance matrix Sf = [Sf (x, y)], can be expressed in
the matrix form using f(L) as follows:

Sf = diag(Φf(Λ)ΦT )J + J diag(Φf(Λ)ΦT )− 2Φf(Λ)ΦT

= diag(f(L))J + J diag(f(L))− 2f(L)
(1)

Assume, graphs G1 and G2 are isomorphic and do not contain self-loops then their respective
adjacency matrices are equal upto permutation (W1 = PW2P

T ) and also implies the equality of
their Laplacian matrices upto permutation (L1 = PL2P

T ). Then, we can specify SG1
in terms of

SG2
as follows,

PSG2
PT = Pdiag(f(L2))JPT + PJ diag(f(L2))PT − 2Pf(L2)PT

= diag(Pf(L2)PT )1T + J diag(Pf(L2)PT )− 2Pf(L2)PT
(2)

Since f only operates on eigenvalues of a matrix and P can only permutes the rows of φ matrix,
we have f(L1) = Pf(L2)PT . This proves that SG1 = PSG2P

T for any two isomorphic graphs.
Above result, also holds for Lnorm. Now, all it remains to show that this also holds true in opposite
direction as well. More specifically, we prove that one can uniquely recover Laplacian matrix L from
the f -spectral distance matrix Sf as follows:

Since, the eigenvectors of symmetric L are orthogonal to each other and to 1, we have,

f(L)1 =

N−1∑
k=0

f(λk)uku
T
k 1 = 0, since f(λ0) = 0 (3)

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Similarly, we have 1T f(L) = 0. Using Eq. 1 and 3, we can explicitly derive f(L) in terms of D as,

f(L) = −1

2

(
Sf −

1

N
(SfJ + JSf ) +

1

N2
JSfJ

)
(4)

This shows that we can uniquely recover f(L) from Sf . Further since f(λ) is a bijective function,
we can also uniquely recover the eigenvector matrix and eigenvalues of L from f(L).

Finally, we show that for a given two graph f -spectral distance matrices, S1 = SG1
and S2 = SG2

,
such that S2 = PS1PT for some permutation matrix, we have L2 = PL1P

T .

Pf(L1)PT = −1

2
P
(
S1 −

1

N
(S1J + JS1) +

1

N2
JS1J

)
PT

= −1

2

(
PS1PT −

1

N
(PS1PTJ + JPS1PT ) +

1

N2
JPS1PTJ

)
= −1

2

(
S2 −

1

N
(S2J + JS2) +

1

N2
JS2J

)
= f(L2)

Since f is bijective, we can conclude Pf(L1)PT = f(L2) =⇒ PL1P
T = L2. This completes the

full proof of Theorem 1.

Variant of Theorem 1: We consider the variant of Theorem 1 for the normalized graph Lapla-
cian Lnorm = L̃ = D−

1
2LD−

1
2 . Again L̃ = D−

1
2LD−

1
2 is semi-definite and admits an eigen-

decomposition of the form L̃ = Φ̃Λ̃Φ̃T , where Λ̃ = diag[λ̃k] is the diagonal matrix formed by the
eigenvalues λ̃0 = 0 < λ̃1 ≤ · · · ≤ λ̃N−1, and Φ̃ = [φ̃0, ..., φ̃N−1] is an orthogonal matrix formed
by the corresponding eigenvectors φ̃k’s.

With respect to L̃, for a given (real)-analytical function f on R+ with f(0) = 0, we define the
f -spectral distance between x and y on G as follows:

S̃f (x, y) =

N−1∑
k=0

f(λ̃k)(φ̃k(x)− φ̃k(y))2 (5)

Define, J̃ = D
1
2 J , d = trace(D

1
2 ) and trace(L) =

∑
i

∑
jWij = vol(G) (the sum of the weights

of all edges). We note that φ̃TkD
1
2 1 = 0, ∀k 6= 0, and thus, L̃T J̃ = J̃T L̃ = 0. Corresponding

to Eq. 1 and Eq. 4, the following expressions hold which relate the (normalized) graph f -spectral
distance matrix S̃f = [S̃f (x, y)] to the normalized graph Laplacian L̃,

S̃f = diag(f(L̃))J + J diag(f(L̃))− 2f(L̃)

and

f(L̃) = −1

2

(
S̃f −

1

d
(S̃f J̃ + J̃ S̃f ) +

1

d2
J̃ S̃f J̃

) (6)

Hence, we have the following variant of Theorem 1.

Theorem 1 (Uniqueness of Normalized FGSD) The f -spectral distance matrix Sf = [Sf (x, y)]
uniquely determines the underlying graph (up to graph isomorphism and a scalar constant factor d
on the weigh matrix). Thus, each graph has a unique Sf up to permutation. More precisely, two
undirected, weighted (and connected) graphs G1 and G2 have the same FGSD based distance matrix
up to permutation, i.e., SG1 = PSG2P

T for some permutation matrix P , if and only if the two
graphs are isomorphic and the weight matrices WG1

and WG2
is such that WG1

= PdWG2
PT for

some scalar constant d > 0.
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2 Proof of Theorem 2

The proof directly builds upon the fact that the effective resistance distance on the graph is a monotone
function with respect to adding or removing edges (or weights) (see in [4], Theorem 2.6 for more
details). In other words, pairwise effective resistance on a graph cannot increase when edges (or
weights) are added. Suppose we add an edge (or increase the edge weight) wij on a graph G and get
a new graph G

′
. LetR andR′ be the multiset of pairwise effective resistance distances before and

after adding/increasing the edge (weight) wij in the graph respectively.

Then, using the parallel law of resistance, we can show that S ′ij will always decrease according to
S ′ij =

Sijwij
Sij+wij . As a result, if the elements ofR andR′ are in the sorted order, then the following

vector comparison (element-wise) strictly holds: R′ ≺ R, when we add edges. Likewise,R′ � R
when we remove edges. Thus, we conclude thatR is unique up to a fixed number of edges.

3 Proof of Theorem 3

FGSD provides a graph embedding using the following expression, Ψ = Φ
√
f(Λ). Hence, we have

Sf (x, y) = ||Ψ(x)−Ψ(y)||22. By the definition of graph isometric embedding, this shows that FGSD
serves as an isometric measure on the graph embedding (defined by Ψ) in a Euclidean space.

Next, we show the conditions under which Ψ embedding is unique for a graph G.

1) Ψ is unique, if there does not exist any other Ψ′ = Ψ with f(L
′
) 6= f(L

′
). As a result,

Φ
′√

f(Λ′) 6= Φ
√
f(Λ) must hold true for all L

′ 6= L. This implies that, φ
′

k 6=
√
f(λj)/f(λ

′
j)φk,

∀k ∈ [1, N − 1].

2) We must also make sure that one can always reconstruct the same Ψ from Sf . Now, according
to Theorem 1, one can recover f(L) uniquely from Sf . If all the eigenvalues of f(L) are distinct,
then the eigenvalue decomposition of L is also unique. This ensures that we can recover the same
Φ after the decomposition to reconstruct the same Ψ. Note that we can compute Sf directly from
Ψ as follows: Sf = diag(ΨΨT )J + J diag(ΨΨT ) − 2ΨΨT . In short, we have the following
uniqueness relationships under the aforementioned conditions, where Ψ is the Euclidean embedding
of a graph G1:

SG1
f(LG1

) LG1
f(LG1

) ΨG1

4 Proof of Theorem 4

Lemma 1 (Eigenvalue Interlacing Lemma [3]) Let A
′

= A+ σzzT be the rank one perturbation
of A matrix with ||z||2 = 1. Then, the eigenvalues of A

′
will interlace with eigenvalues of A such that

if σ ≥ 0, λ0 ≤ λ
′

0 ≤ λ1 ≤ λ
′

1 ≤ .... ≤ λN−1 ≤ λ
′

N−1 ≤ λN−1 + σ; or otherwise (i.e., if σ < 0),
λ0 + σ ≤ λ′0 ≤ λ0 ≤ λ

′

1 ≤ λ1 ≤ .... ≤ λ
′

N−1 ≤ λN−1.

Let Sxy and S ′xy be the graph f -spectral distance before and after the single edge perturbation or
rank one modification of graph Laplacian L. Then, the modified graph Laplacian L

′
can be expressed

as, L
′

= L+ 24wijeeT , where w
′

ij = wij +4wij is the modification of weight edge wij(≥ 0) to
w
′

ij(≥ 0) and e is N size column vector with ei = 1√
2
, ej = − 1√

2
and 0 otherwise. Since our goal is

to inspect the dependency from f(λ) perspective, therefore, we will eliminate any dependency on the
Laplacian eigenvectors by bounding them. We will focus our analysis on4wij ≥ 0 and note that
here σ = 24wij .

Case I: f is an increasing function and S ′xy > Sxy ,

|S
′

xy − Sxy| =
∣∣∣N−1∑
k=0

f(λ
′

k)(φ
′

k(x)− φ
′

k(y))2 −
N−1∑
k=0

f(λk)(φk(x)− φk(y))2
∣∣∣
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Applying Lemma 1, and using the fact that rows of eigenvectors matrix are orthogonal to each other
and have unit norm, we get,

4S ≤
∣∣∣f(λN−1 + σ)

N−1∑
k=0

(φ
′

k(x)− φ
′

k(y))2 − f(λ1)

N−1∑
k=0

(φk(x)− φk(y))2
∣∣∣

= 2
∣∣∣f(λN−1 + σ)− f(λ1)

∣∣∣
Case II: f is an increasing function and S ′xy < Sxy . Again applying Lemma 1, and using orthonormal
property of eigenvector, matrix we get,

|Sxy − S
′

xy| =
∣∣∣N−1∑
i=0

f(λk)(φi(x)− φi(y))2 −
N−1∑
i=0

f(λ
′

k)(φ
′

i(x)− φ
′

i(y))2
∣∣∣

≤
∣∣∣f(λN−1)

N−1∑
i=0

(φi(x)− φi(y))2 − f(λ
′

1)

N−1∑
i=0

(φ
′

i(x)− φ
′

i(y))2
∣∣∣

= 2
∣∣∣f(λN−1)− f(λ1)

∣∣∣
Combining Case I and Case II together, we get following bound for f as increasing function,

4S ≤ 2|f(λN−1 + 24wij)− f(λ1)|

Case III: f is a decreasing function of λ. Same results hold and can be derived in similar fashion.

4S ≤ 2|f(λN−1 + 24wij)− f(λ1)|

Note: The above results are also valid in the case of normalized graph Laplacian Lnorm. Lastly,
when the weight change ∆w is negative (and constrained within a certain range), the stability bounds
are similar but loose when compared to the positive ∆w change case. The bounds are loose due to
the fact that the Eigenvalue Interlacing Lemma does not explicitly provide the bound on the change
in the largest eigenvalue with respect to negative ∆w change. As a result, the change in f -spectral
distance (i.e., ∆Sxy) is loosely upper bounded by 2|f(λN−1)| in case of an increasing function while
for a decreasing function, it is upper bounded by 2|f(λ1)|.

5 Proof of Theorem 5

Lemma 2 (McDiarmid’s Inequality [7]) Let X = (x1, x2, ..., xm) be a set random variables and
F : X→ R and x

′

i be the substitution of xi. Now if,

sup
x1,..,xi,..,xm,x

′
i

|F (x1, .., xi, .., xm)− F (x1, .., x
′

i, .., xm)| ≤ ci

= sup
x1,..,xi,..,xm,x

′
i

|FX − FXi | ≤ ci ,∀i

Then, the following exponential bound holds,

P
(
F (X)−EX [F (X)] ≥ ε

)
≤ e
− 2ε2∑m

i=1
c2
i

Consider the weighted adjacency matrix entries as random variables, and letD be the distribution from
which weights are independently sampled. We fix the order of n(n−1)2 random variables in weighted
adjacency matrix as

{
w1, w2, ..., wN(N−1)

2

}
and assume weights are bounded 0 < α ≤ wi ≤ β, ∀i.

Our goal is to to obtain exponential bounds on the expected value of S(x, y). Now, we have S(x, y)
as the function of f(L) i.e., Sf (x, y) = F (f(L)) = F

(
f(D −W )

)
= F

(
w1, w2, ..., wN(N−1)

2

)
.

Then, in order to apply McDiarmid’s inequality, we bound the following,
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Laplacian f as increasing function f as decreasing function

L 2f(2βN + 2β) 2f(αN)

Lnorm 2f(2 + 2β) 2f(αN)

Table 1: Bounds on Θ.

sup|F − F i| = sup
w1,..,wN(N−1)

2

,w
′
i

∣∣F (w1, .., wi, .., wN(N−1)
2

)
− F

(
w1, .., w

′

i, .., wN(N−1)
2

)∣∣
≤ sup
λN−1,λ1,4wi

4S (Using Theorem 4)

= Θ

Then, applying applying Lemma 2 gives the following bound with probability 1− δ, where δ ∈ (0, 1).

P

(
Sf (x, y)−E[Sf (x, y)] ≥ ε

)
≤ e−

4ε2

N(N−1)Θ2

=⇒
∣∣Sf (x, y)−E[Sf (x, y)]

∣∣ ≤ Θ

2

√
N(N − 1)

√
log

1

δ

Same results also hold for Lnorm case.

Now, Θ itself depends upon the bounds on λ1, λN−1 and4wi. Let λupN−1 is the largest upper bound
on λN−1 and λlow1 is the smallest lower bound possible over all graphs of size N . Since wi > 0 ∀i,
we have a complete graph. Now according to Lemma 1, λ1 eigenvalue will always increase, with
increase in edge weights. As a result, λlow1 will achieve it lowest value when all weights are equal to
α which implies λlow1 ≥ αN .

Case I: Consider Laplacian as L and f as increasing function. Then, λupN−1 ≤ 2βN [1].

4S ≤ 2|f(λN−1 + 24wi)− f(λ1)|
≤ 2|f(λupN−1 + 24wi)|
= 2|f(2βN + 2β)|

For decreasing f function, we have,

4S ≤ 2|f(λ1)− f(λN−1 + 24wi)|
≤ 2|f(λlowN−1)|
= 2|f(αN)|

Case II: Consider Laplacian as Lnorm and f as increasing function. Then, λupN−1 ≤ 2 and,

4S ≤ 2|f(2 + 2β)|

For decreasing f function, we have,

4S ≤ 2|f(αN)|

The summary of Θ bounds are given in Table 1 for different cases. This completes the proof.

Connection to Uniform Stability: The f -spectral distance function can be thought of as a learning
algorithm F on a graph which satisfies the notion of uniform stability given as 2, sup

X,z

∣∣`(AX , z)−
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`(AXi , z)
∣∣ ≤ η, where ` is the loss function, A is the learning algorithm, z is any data point and X is

the set of N data points. Uniform stability is a strong stability criteria which provides generalization
guarantees by establishing an upper bound η on the change in loss due to the modification of a single
data point from the training set (and by subsequently taking the supremum over all possible training
sets X and z data point). To conjure the notion of uniform stability for distance function operating on
a graph, we can replace A by F (distance function), ` by identity function, X by |E| set of edges
in the graph and define Xi as the modification of any single edge and replace z as the pairwise
node input (x, y). Then in case of f -spectral distance function, η is nothing but equal to Θ and thus,
satisfies notion of uniform stability in the sense defined above.

6 Experiments and Results

Datasets MUTAG PROTEIN D&D

Harmonic 92.12 73.42 77.10

Biharmonic 89.24 70.06 75.34

Table 2: Preliminary Experiment: Classification accuracy on few bioinformatics datasets. Harmonic
based feature space yields higher accuracy than biharmonic due to sparseness.

Parameters Selection: For Random-Walk (RW) kernel, decay factor is chosen from
{10−6, 10−5..., 10−1}. For Weisfeiler-Lehman (WL) kernel, we chose h = 2 as the maximum
iteration to limit the exponentially time increase and feature space of the kernel and in case of unla-
beled classification, we fed node degree as the node labeled data. For graphlet kernel (GK), we chose
graphlets size {3, 5, 7}. For deep graph kernels (DGK), the window size and dimension is taken from
the set {2, 5, 10, 25, 50} and report the best classification accuracy obtained among: deep graphlet
kernel, deep shortest path kernel and deep Weisfeiler-Lehman kernel. For Multiscale Laplacian
Graph (MLG) kernel, we chose η and γ parameter of the algorithm from {0.01, 0.1, 1}, radius size
from {1, 2, 3, 4}, and level number from {1, 2, 3, 4}. While in case of unlabeled classification, we
provide degree of the node as the labeled data. For diffusion-convolutional neural networks (DCNN),
we chose number of hops from {2, 5} and AdaGrad algorithm (gradient descent) with parameters:
learning rate 0.05, batch size 100 and number of epochs 500. Again, node degree served as labeled
data for the case of unlabeled classification. For the rest, best reported results were borrowed from
PATCHY-SAN (CNNs) [8], skewed graph spectrum (SGS) [5] and graphlet spectrum (GS) [6] papers,
since the experimental setup was the same and a fair comparison can be made.
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