NIPS Proceedingsβ

Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Oral

Abstract

This paper is concerned with finding a solution x to a quadratic system of equations y_i = |< a_i, x >|^2, i = 1, 2, ..., m. We prove that it is possible to solve unstructured quadratic systems in n variables exactly from O(n) equations in linear time, that is, in time proportional to reading and evaluating the data. This is accomplished by a novel procedure, which starting from an initial guess given by a spectral initialization procedure, attempts to minimize a non-convex objective. The proposed algorithm distinguishes from prior approaches by regularizing the initialization and descent procedures in an adaptive fashion, which discard terms bearing too much influence on the initial estimate or search directions. These careful selection rules---which effectively serve as a variance reduction scheme---provide a tighter initial guess, more robust descent directions, and thus enhanced practical performance. Further, this procedure also achieves a near-optimal statistical accuracy in the presence of noise. Finally, we demonstrate empirically that the computational cost of our algorithm is about four times that of solving a least-squares problem of the same size.