
Solving Random Quadratic Systems of Equations
Is Nearly as Easy as Solving Linear Systems

Yuxin Chen
Department of Statistics

Stanford University
Stanford, CA 94305

yxchen@stanfor.edu

Emmanuel J. Candès
Department of Mathematics and Department of Statistics

Stanford University
Stanford, CA 94305

candes@stanford.edu

Abstract

This paper is concerned with finding a solution x to a quadratic system of equa-
tions yi = |〈ai,x〉|2, i = 1, . . . ,m. We demonstrate that it is possible to solve
unstructured random quadratic systems in n variables exactly from O(n) equa-
tions in linear time, that is, in time proportional to reading the data {ai} and {yi}.
This is accomplished by a novel procedure, which starting from an initial guess
given by a spectral initialization procedure, attempts to minimize a nonconvex
objective. The proposed algorithm distinguishes from prior approaches by reg-
ularizing the initialization and descent procedures in an adaptive fashion, which
discard terms bearing too much influence on the initial estimate or search direc-
tions. These careful selection rules—which effectively serve as a variance reduc-
tion scheme—provide a tighter initial guess, more robust descent directions, and
thus enhanced practical performance. Further, this procedure also achieves a near-
optimal statistical accuracy in the presence of noise. Empirically, we demonstrate
that the computational cost of our algorithm is about four times that of solving a
least-squares problem of the same size.

1 Introduction

Suppose we are given a response vector y = [yi]1≤i≤m generated from a quadratic transformation
of an unknown object x ∈ Rn/Cn, i.e.

yi = |〈ai,x〉|2 , i = 1, · · · ,m, (1)

where the feature/design vectors ai ∈ Rn/Cn are known. In other words, we acquire measurements
about the linear product 〈ai,x〉 with all signs/phases missing. Can we hope to recover x from this
nonlinear system of equations?

This problem can be recast as a quadratically constrained quadratic program (QCQP), which sub-
sumes as special cases various classical combinatorial problems with Boolean variables (e.g. the
NP-complete stone problem [1, Section 3.4.1]). In the physical sciences, this problem is commonly
referred to as phase retrieval [2]; the origin is that in many imaging applications (e.g. X-ray crys-
tallography, diffraction imaging, microscopy) it is infeasible to record the phases of the diffraction
patterns so that we can only record |Ax|2, where x is the electrical field of interest. Moreover, this
problem finds applications in estimating the mixture of linear regression, since one can transform the
latent membership variables into missing phases [3]. Despite its importance across various fields,
solving the quadratic system (1) is combinatorial in nature and, in general, NP complete.

To be more realistic albeit more challenging, the acquired samples are almost always corrupted by
some amount of noise, namely,

yi ≈ |〈ai,x〉|2 , i = 1, · · · ,m. (2)
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For instance, in imaging applications the data are best modeled by Poisson random variables

yi
ind.∼ Poisson

(
|〈ai,x〉|2

)
, i = 1, · · · ,m, (3)

which captures the variation in the number of photons detected by a sensor. While we shall pay
special attention to the Poisson noise model due to its practical relevance, the current work aims to
accommodate general—or even deterministic—noise structures.

1.1 Nonconvex optimization

Assuming independent samples, the first attempt is to seek the maximum likelihood estimate (MLE):

minimizez −
∑m

i=1
` (z; yi) , (4)

where ` (z; yi) represents the log-likelihood of a candidate z given the outcome yi. As an example,
under the Poisson data model (3), one has (up to some constant offset)

`(z; yi) = yi log(|a∗i z|2)− |a∗i z|2. (5)
Computing the MLE, however, is in general intractable, since `(z; yi) is not concave in z.

Fortunately, under unstructured random systems, the problem is not as ill-posed as it might seem,
and is solvable via convenient convex programs with optimal statistical guarantees [4–12]. The
basic paradigm is to lift the quadratically constrained problem into a linearly constrained problem
by introducing a matrix variable X = xx∗ and relaxing the rank-one constraint. Nevertheless,
working with the auxiliary matrix variable significantly increases the computational complexity,
which exceeds the order of n3 and is prohibitively expensive for large-scale data.

This paper follows a different route, which attempts recovery by minimizing the nonconvex objec-
tive (4) or (5) directly (e.g. [2, 13–19]). The main incentive is the potential computational benefit,
since this strategy operates directly upon vectors instead of lifting decision variables to higher di-
mension. Among this class of procedures, one natural candidate is the family of gradient-descent
type algorithms developed with respect to the objective (4). This paradigm can be regarded as per-
forming some variant of stochastic gradient descent over the random samples {(yi,ai)}1≤i≤m as
an approximation to maximize the population likelihood L(z) := E(y,a)[`(z; y)]. While in general
nonconvex optimization falls short of performance guarantees, a recently proposed approach called
Wirtinger Flow (WF) [13] promises efficiency under random features. In a nutshell, WF initializes
the iterate via a spectral method, and then successively refines the estimate via the following update
rule:

z(t+1) = z(t) +
µt
m

∑m

i=1
∇`(z(t); yi),

where z(t) denotes the tth iterate of the algorithm, and µt is the learning rate. Here, ∇`(z; yi)
represents the Wirtinger derivative with respect to z, which reduces to the ordinary gradient in the
real setting. Under Gaussian designs, WF (i) allows exact recovery from O (n log n) noise-free
quadratic equations [13];1 (ii) recovers x up to ε-accuracy within O(mn2 log 1/ε) time (or flops)
[13]; and (iii) is stable and converges to the MLE under Gaussian noise [20]. Despite these intriguing
guarantees, the computational complexity of WF still far exceeds the best that one can hope for.
Moreover, its sample complexity is a logarithmic factor away from the information-theoretic limit.

1.2 This paper: Truncated Wirtinger Flow

This paper develops a novel linear-time algorithm, called Truncated Wirtinger Flow (TWF), that
achieves a near-optimal statistical accuracy. The distinguishing features include a careful initializa-
tion procedure and a more adaptive gradient flow. Informally, TWF entails two stages:

1. Initialization: compute an initial guess z(0) by means of a spectral method applied to a
subset T0 of data {yi} that do not bear too much influence on the spectral estimates;

2. Loop: for 0 ≤ t < T ,

z(t+1) = z(t) +
µt
m

∑
i∈Tt+1

∇`(z(t); yi) (6)

for some index set Tt+1 ⊆ {1, · · · ,m} over which ∇`(z(t); yi) are well-controlled.
1 f(n) = O (g(n)) or f(n) . g(n) (resp. f(n) & g(n)) means there exists a constant c > 0 such that

|f(n)| ≤ c|g(n)| (resp. |f(n)| ≥ c |g(n)|). f(n) � g(n) means f(n) and g(n) are orderwise equivalent.
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Figure 1: (a) Relative errors of CG and TWF vs. iteration count, where n = 1000 and m = 8n.
(b) Relative MSE vs. SNR in dB, where n = 100. The curves are shown for two settings: TWF for
solving quadratic equations (blue), and MLE had we observed additional phase information (green).

We highlight three aspects of the proposed algorithm, with details deferred to Section 2.

(a) In contrast to WF and other gradient descent variants, we regularize both the initialization and
the gradient flow in a more cautious manner by operating only upon some iteration-varying
index sets Tt. The main point is that enforcing such careful selection rules lead to tighter
initialization and more robust descent directions.

(b) TWF sets the learning rate µt in a far more liberal fashion (e.g. µt ≡ 0.2 under suitable
conditions), as opposed to the situation in WF that recommends µt = O(1/n).

(c) Computationally, each iterative step mainly consists in calculating {∇`(z; yi)}, which is in-
expensive and can often be performed in linear time, that is, in time proportional to evaluating
the data and the constraints. Take the real-valued Poisson likelihood (5) for example:

∇`(z; yi) = 2

{
yi

|a>i z|2
aia

>
i z − aia>i z

}
= 2

(
yi − |a>i z|2

a>i z

)
ai, 1 ≤ i ≤ m,

which essentially amounts to two matrix-vector products. To see this, rewrite∑
i∈Tt+1

∇`(z(t); yi) = A>v, vi =

{
2
yi−|a>

i z(t)|2

a>
i z(t) , i ∈ Tt+1,

0, otherwise,

whereA := [a1, · · · ,am]>. Hence,Az(t) gives v andA>v the desired truncated gradient.

1.3 Numerical surprises

The power of TWF is best illustrated by numerical examples. Since x and e−jφx are indistinguish-
able given y, we evaluate the solution based on a metric that disregards the global phase [13]:

dist (z,x) := minϕ:∈[0,2π) ‖e−jϕz − x‖. (7)

In the sequel, TWF operates according to the Poisson log-likelihood (5), and takes µt ≡ 0.2.

We first compare the computational efficiency of TWF for solving quadratic systems with that of
conjugate gradient (CG) for solving least square problems. As is well known, CG is among the
most popular methods for solving large-scale least square problems, and hence offers a desired
benchmark. We run TWF and CG respectively over the following two problems:

(a) find x ∈ Rn s.t. bi = a>i x, 1 ≤ i ≤ m,
(b) find x ∈ Rn s.t. bi = |a>i x|, 1 ≤ i ≤ m,

where m = 8n, x ∼ N (0, I), and ai
ind.∼ N (0, I). This yields a well-conditioned design matrix

A, for which CG converges extremely fast [21]. The relative estimation errors of both methods are
reported in Fig. 1(a), where TWF is seeded by 10 power iterations. The iteration counts are plotted
in different scales so that 4 TWF iterations are tantamount to 1 CG iteration. Since each iteration
of CG and TWF involves two matrix vector products Az and A>v, the numerical plots lead to a
suprisingly positive observation for such an unstructured design:
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Figure 2: Recovery after (top) truncated spectral initialization, and (bottom) 50 TWF iterations.

Even when all phase information is missing, TWF is capable of solving a quadratic system of
equations only about 4 times2 slower than solving a least squares problem of the same size!

The numerical surprise extends to noisy quadratic systems. Under the Poisson data model, Fig. 1(b)
displays the relative mean-square error (MSE) of TWF when the signal-to-noise ratio (SNR) varies;
here, the relative MSE and the SNR are defined as3

MSE := dist2(x̂,x) / ‖x‖2 and SNR := 3‖x‖2, (8)

where x̂ is an estimate. Both SNR and MSE are displayed on a dB scale (i.e. the values of
10 log10(SNR) and 10 log10(MSE) are plotted). To evaluate the quality of the TWF solution, we
compare it with the MLE applied to an ideal problem where the phases (i.e. {ϕi = sign(a>i x)})
are revealed a priori. The presence of this precious side information gives away the phase retrieval
problem and allows us to compute the MLE via convex programming. As illustrated in Fig. 1(b),
TWF solves the quadratic system with nearly the best possible accuracy, since it only incurs an extra
1.5 dB loss compared to the ideal MLE with all true phases revealed.

To demonstrate the scalability of TWF on real data, we apply TWF on a 320×1280 image. Consider
a type of physically realizable measurements called coded diffraction patterns (CDP) [22], where

y(l) = |FD(l)x|2, 1 ≤ l ≤ L, (9)

where m = nL, |z|2 denotes the vector of entrywise squared magnitudes, and F is the DFT matrix.
Here, D(l) is a diagonal matrix whose diagonal entries are randomly drawn from {1,−1, j,−j},
which models signal modulation before diffraction. We generate L = 12 masks for measurements,
and run TWF on a MacBook Pro with a 3 GHz Intel Core i7. We run 50 truncated power iterations
and 50 TWF iterations, which in total cost 43.9 seconds for each color channel. The relative errors
after initialization and TWF iterations are 0.4773 and 2.2× 10−5, respectively; see Fig. 2.

1.4 Main results

We corroborate the preceding numerical findings with theoretical support. For concreteness, we
assume TWF proceeds according to the Poisson log-likelihood (5). We suppose the samples (yi,ai)
are independently and randomly drawn from the population, and model the random features ai as

ai ∼ N (0, In) . (10)

To start with, the following theorem confirms the performance of TWF under noiseless data.

2Similar phenomena arise in many other experiments we’ve conducted (e.g. when the sample size m ranges
from 6n to 20n). In fact, this factor seems to improve slightly as m/n increases.

3To justify the definition of SNR, note that the signals and noise are captured by µi = (a>
i x)

2 and yi−µi,
respectively. The SNR is thus given by

∑m
i=1 µ

2
i∑m

i=1 Var[yi]
=

∑m
i=1 |a>

i x|4∑m
i=1 |a>

i x|2 ≈
3m‖x‖4
m‖x‖2 = 3‖x‖2.
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Theorem 1 (Exact recovery). Consider the noiseless case (1) with an arbitrary x ∈ Rn. Suppose
that the learning rate µt is either taken to be a constant µt ≡ µ > 0 or chosen via a backtracking
line search. Then there exist some constants 0 < ρ, ν < 1 and µ0, c0, c1, c2 > 0 such that with
probability exceeding 1− c1 exp (−c2m), the TWF estimates (Algorithm 1) obey

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N, (11)
provided that m ≥ c0n and µ ≤ µ0. As discussed below, we can take µ0 ≈ 0.3.

Theorem 1 justifies two intriguing properties of TWF. To begin with, TWF recovers the ground
truth exactly as soon as the number of equations is on the same order of the number of unknowns,
which is information theoretically optimal. More surprisingly, TWF converges at a geometric rate,
i.e. it achieves ε-accuracy (i.e. dist(z(t),x) ≤ ε ‖x‖) within at most O (log 1/ε) iterations. As a
result, the time taken for TWF to solve the quadratic systems is proportional to the time taken to
read the data, which confirms the linear-time complexity of TWF. These outperform the theoretical
guarantees of WF [13], which requiresO(mn2 log 1/ε) runtime andO(n log n) sample complexity.

Notably, the performance gain of TWF is the result of the key algorithmic changes. Rather than
maximizing the data usage at each step, TWF exploits the samples at hand in a more selective
manner, which effectively trims away those components that are too influential on either the initial
guess or the search directions, thus reducing the volatility of each movement. With a tighter initial
guess and better-controlled search directions in place, TWF is able to proceed with a more aggressive
learning rate. Taken collectively these efforts enable the appealing convergence property of TWF.

Next, we turn to more realistic noisy data by accounting for a general additive noise model:

yi = |〈ai,x〉|2 + ηi, 1 ≤ i ≤ m, (12)
where ηi represents a noise term. The stability of TWF is demonstrated in the theorem below.
Theorem 2 (Stability). Consider the noisy case (12). Suppose that the learning rate µt is either
taken to be a positive constant µt ≡ µ or chosen via a backtracking line search. If

m ≥ c0n, µ ≤ µ0, and ‖η‖∞ ≤ c1 ‖x‖
2
, (13)

then with probability at least 1− c2 exp (−c3m), the TWF estimates (Algorithm 1) satisfy

dist(z(t),x) .
‖η‖√
m‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N (14)

for all x ∈ Rn. Here, 0 < ρ < 1 and µ0, c0, c1, c2, c3 > 0 are some universal constants.

Alternatively, if one regards the SNR for the model (12) as follows

SNR :=
(∑m

i=1
|〈ai,x〉|4

)
/ ‖η‖2 ≈ 3m‖x‖4 / ‖η‖2, (15)

then we immediately arrive at another form of performance guarantee stated in terms of SNR:

dist(z(t),x) .
1√

SNR
‖x‖+ (1− ρ)t‖x‖, ∀t ∈ N. (16)

As a consequence, the relative error of TWF reaches O(SNR−1/2) within a logarithmic number of
iterations. It is worth emphasizing that the above stability guarantee is deterministic, which holds for
any noise structure obeying (13). Encouragingly, this statistical accuracy is nearly un-improvable,
as revealed by a minimax lower bound that we provide in the supplemental materials.

We pause to remark that several other nonconvex methods have been proposed for solving quadratic
equations, which exhibit intriguing empirical performances. A partial list includes the error reduc-
tion schemes by Fienup [2], alternating minimization [14], Kaczmarz method [17], and generalized
approximate message passing [15]. However, most of them fall short of theoretical support. The
analytical difficulty arises since these methods employ the same samples in each iteration, which
introduces complicated dependencies across all iterates. To circumvent this issue, [14] proposes
a sample-splitting version of the alternating minimization method that employs fresh samples in
each iteration. Despite the mathematical convenience, the sample complexity of this approach is
O(n log3 n + n log2 n log 1/ε), which is a factor of O(log3 n) from optimal and is empirically
largely outperformed by the variant that reuses all samples. In contrast, our algorithm uses the same
pool of samples all the time and is therefore practically appealing. Besides, the approach in [14]
does not come with provable stability guarantees. Numerically, each iteration of Fienup’s algorithm
(or alternating minimization) involves solving a least squares problem, and the algorithm converges
in tens or hundreds of iterations. This is computationally more expensive than TWF, whose compu-
tational complexity is merely about 4 times that of solving a least squares problem.
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2 Algorithm: Truncated Wirtinger Flow

This section explains the basic principles of truncated Wirtinger flow. For notational convenience,
we denoteA := [a1, · · · ,am]> and A (M) :=

{
a>i Mai

}
1≤i≤m for anyM ∈ Rn×n.

2.1 Truncated gradient stage

z = (3, 6)

x = (2.7, 8)

Figure 3: The locus of − 1
2∇`i (z)

for all unit vectors ai. The red ar-
rows depict those directions with
large weights.

In the case of independent real-valued data, the descent direc-
tion of the WF updates—which is the gradient of the Poisson
log-likelihood—can be expressed as follows:

m∑
i=1

∇`(z; yi) =
m∑
i=1

2
yi − |a>i z|2

a>i z︸ ︷︷ ︸
:=νi

ai, (17)

where νi represents the weight assigned to each feature ai.

Unfortunately, the gradient of this form is non-integrable and
hence uncontrollable. To see this, consider any fixed z ∈ Rn.
The typical value of min1≤i≤m |a>i z| is on the order of 1

m‖z‖,
leading to some excessively large weights νi. Notably, an un-
derlying premise for a nonconvex procedure to succeed is to

ensure all iterates reside within a basin of attraction, that is, a neighborhood surrounding x within
which x is the unique stationary point of the objective. When a gradient is unreasonably large, the
iterative step might overshoot and end up leaving this basin of attraction. Consequently, WF moving
along the preceding direction might not come close to the truth unless z is already very close to x.
This is observed in numerical simulations4.

TWF addresses this challenge by discarding terms having too high of a leverage on the search
direction; this is achieved by regularizing the weights νi via appropriate truncation. Specifically,

z(t+1) = z(t) +
µt
m
∇`tr(z(t)), ∀t ∈ N, (18)

where∇`tr (·) denotes the truncated gradient given by

∇`tr (z) :=
∑m

i=1
2
yi − |a>i z|2

a>i z
ai1Ei1(z)∩Ei2(z) (19)

for some appropriate truncation criteria specified by E i1 (·) and E i2 (·). In our algorithm, we take
E i1 (z) and E i2 (z) to be two collections of events given by

E i1(z) :=
{
αlb
z ‖z‖ ≤

∣∣a>i z∣∣ ≤ αub
z ‖z‖

}
; (20)

E i2(z) :=

{
|yi − |a>i z|2| ≤

αh
m

∥∥y −A (zz>)∥∥
1

|a>i z|
‖z‖

}
, (21)

where αlb
z , αub

z , αz are predetermined truncation thresholds. In words, we drop components whose
size fall outside some confidence range—a range where the magnitudes of both the numerator and
denominator of νi are comparable to their respective mean values.

This paradigm could be counter-intuitive at first glance, since one might expect the larger terms
to be better aligned with the desired search direction. The issue, however, is that the large terms
are extremely volatile and could dominate all other components in an undesired way. In contrast,
TWF makes use of only gradient components of typical sizes, which slightly increases the bias but
remarkably reduces the variance of the descent direction. We expect such gradient regularization
and variance reduction schemes to be beneficial for solving a broad family of nonconvex problems.

2.2 Truncated spectral initialization

A key step to ensure meaningful convergence is to seed TWF with some point inside the basin of
attraction, which proves crucial for other nonconvex procedures as well. An appealing initialization

4For complex-valued data, WF converges empirically, as mini |a>
i z| is much larger than the real case.
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Algorithm 1 Truncated Wirtinger Flow.
Input: Measurements {yi | 1 ≤ i ≤ m} and feature vectors {ai | 1 ≤ i ≤ m}; truncation
thresholds αlb

z , αub
z , αh, and αy satisfying (by default, αlb

z = 0.3, αub
z = αh = 5, and αy = 3)

0 < αlb
z ≤ 0.5, αub

z ≥ 5, αh ≥ 5, and αy ≥ 3. (25)

Initialize z(0) to be
√

mn∑m
i=1‖ai‖2

λz̃, where λ =
√

1
m

∑m
i=1 yi and z̃ is the leading eigenvector of

Y =
1

m

∑m

i=1
yiaia

∗
i 1{|yi|≤α2

yλ
2
0}. (22)

Loop: for t = 0 : T do

z(t+1) = z(t) +
2µt
m

∑m

i=1

yi −
∣∣a∗i z(t)∣∣2
z(t)∗ai

ai1Ei1∩Ei2 , (23)
where

E i1 :=

{
αlb
z ≤

√
n

‖ai‖
|a∗i z(t)|
‖z(t)‖

≤ αub
z

}
, E i2 :=

{
|yi − |a∗i z(t)|2| ≤ αhKt

√
n

‖ai‖
|a∗i z(t)|
‖z(t)‖

}
, (24)

and Kt :=
1

m

∑m

l=1

∣∣yl − |a∗l z(t)|2∣∣.
Output z(T ).

procedure is the spectral method [14] [13], which initializes z(0) as the leading eigenvector of Ỹ :=
1
m

∑m
i=1 yiaia

>
i . This is based on the observation that for any fixed unit vector x,

E[Ỹ ] = I + 2xx>,

whose principal component is exactly x with an eigenvalue of 3.

Unfortunately, the success of this method requires a sample complexity exceeding n log n. To see
this, recall that maxi yi ≈ 2 logm. Letting k = argmaxi yi and ãk := ak/‖ak‖, one can derive

ã>k Ỹ ãk ≥ ã>k
(
m−1aka

>
k yk

)
ãk ≈ (2n logm)/m,

which dominates x>Ỹ x ≈ 3 unless m & n logm. As a result, ãk is closer to the principal
component of Ỹ than x when m � n. This drawback turns out to be a substantial practical issue.

n: signal dimension (m = 6n)
1000 2000 3000 4000 5000

R
el

at
iv

e 
M

SE

0.7

0.8

0.9

 1   spectral method
  truncated spectral method

Figure 4: Relative initializa-
tion error when ai ∼ N (0, I).

This issue can be remedied if we preclude those data yi with large
magnitudes when running the spectral method. Specifically, we
propose to initialize z(0) as the leading eigenvector of

Y :=
1

m

∑m

i=1
yiaia

>
i 1{|yi|≤α2

y( 1
m

∑m
l=1 yl)} (26)

followed by proper scaling so as to ensure ‖z(0)‖ ≈ ‖x‖. As illus-
trated in Fig. 4, the empirical advantage of the truncated spectral
method is increasingly more remarkable as n grows.

2.3 Choice of algorithmic parameters

One important implementation detail is the learning rate µt. There
are two alternatives that work well in both theory and practice:

1. Fixed size. Take µt ≡ µ for some constant µ > 0. As long as µ is not too large, this strategy
always works. Under the condition (25), our theorems hold for any positive constant µ < 0.28.

2. Backtracking line search with truncated objective. This strategy performs a line search along
the descent direction and determines an appropriate learning rate that guarantees a sufficient
improvement with respect to the truncated objective. Details are deferred to the supplement.

Another algorithmic details to specify are the truncation thresholds αh, αlb
z , αub

z , and αy . The
present paper isolates a concrete set of combinations as given in (25). In all theory and numerical
experiments presented in this work, we assume that the parameters fall within this range.
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Figure 5: (a) Empirical success rates for real Gaussian design; (b) empirical success rates for com-
plex Gaussian design; (c) relative MSE (averaged over 100 runs) vs. SNR for Poisson data.

3 More numerical experiments and discussion

We conduct more extensive numerical experiments to corroborate our main results and verify the
applicability of TWF on practical problems. For all experiments conducted herein, we take a fixed
step size µt ≡ 0.2, employ 50 power iterations for initialization and T = 1000 gradient iterations.
The truncation levels are taken to be the default values αlb

z = 0.3, αub
z = αh = 5, and αy = 3.

We first apply TWF to a sequence of noiseless problems with n = 1000 and varyingm. Generate the
object x at random, and produce the feature vectors ai in two different ways: (1) ai

ind.∼ N (0, I);
(2) ai

ind.∼ N (0, I) + jN (0, I). A Monte Carlo trial is declared success if the estimate x̂ obeys
dist (x̂,x) / ‖x‖ ≤ 10−5. Fig. 5(a) and 5(b) illustrate the empirical success rates of TWF (average
over 100 runs for each m) for noiseless data, indicating that m ≥ 5n are m ≥ 4.5n are often
sufficient under real and complex Gaussian designs, respectively. For the sake of comparison, we
simulate the empirical success rates of WF, with the step size µt = min{1 − e−t/330, 0.2} as
recommended by [13]. As shown in Fig. 5, TWF outperforms WF under random Gaussian features,
implying that TWF exhibits either better convergence rate or enhanced phase transition behavior.

Next, we empirically evaluate the stability of TWF under noisy data. Set n = 1000, produce ai
ind.∼

N (0, I), and generate yi according to the Poisson model (3). Fig. 5(c) shows the relative mean
square error—on the dB scale—with varying SNR (cf. (8)). As can be seen, the empirical relative
MSE scales inversely proportional to SNR, which matches our stability guarantees in Theorem 2
(since on the dB scale, the slope is about -1 as predicted by the theory (16)).

m: number of measurements ( n =1000)
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Figure 6: Empirical success rate
for mixed regression (p = 0.5).

While this work focuses on the Poisson-type objective for con-
creteness, the proposed paradigm carries over to a variety of
nonconvex objectives, and might have implications in solving
other problems that involve latent variables, e.g. matrix comple-
tion [23–25], sparse coding [26], dictionary learning [27], and
mixture problems (e.g. [28, 29]). We conclude this paper with an
example on estimating mixtures of linear regression. Imagine

yi ≈
{
a>i β1, with probability p,
a>i β2, else,

1 ≤ i ≤ m, (27)

where β1,β2 are unknown. It has been shown in [3] that in the
noiseless case, the ground truth satisfies

fi(β1,β2) := y2i + 0.5a>i (β1β
>
2 + β2β

>
1 )ai − a>i (β1 + β2) yi = 0, 1 ≤ i ≤ m,

which forms a set of quadratic constraints (in particular, if one further knows β1 = −β2, then this
reduces to the form (1)). Running TWF with a nonconvex objective

∑m
i=1 f

2
i (z1, z2) (with the

assistance of a 1-D grid search proposed in [29] applied right after truncated initialization) yields
accurate estimation of β1,β2 under minimal sample complexity, as illustrated in Fig. 6.
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