Bayesian inference for low rank spatiotemporal neural receptive fields

Part of Advances in Neural Information Processing Systems 26 (NIPS 2013)

Bibtex Metadata Paper Reviews Supplemental

Authors

Mijung Park, Jonathan W. Pillow

Abstract

The receptive field (RF) of a sensory neuron describes how the neuron integrates sensory stimuli over time and space. In typical experiments with naturalistic or flickering spatiotemporal stimuli, RFs are very high-dimensional, due to the large number of coefficients needed to specify an integration profile across time and space. Estimating these coefficients from small amounts of data poses a variety of challenging statistical and computational problems. Here we address these challenges by developing Bayesian reduced rank regression methods for RF estimation. This corresponds to modeling the RF as a sum of several space-time separable (i.e., rank-1) filters, which proves accurate even for neurons with strongly oriented space-time RFs. This approach substantially reduces the number of parameters needed to specify the RF, from 1K-100K down to mere 100s in the examples we consider, and confers substantial benefits in statistical power and computational efficiency. In particular, we introduce a novel prior over low-rank RFs using the restriction of a matrix normal prior to the manifold of low-rank matrices. We then use a localized'' prior over row and column covariances to obtain sparse, smooth, localized estimates of the spatial and temporal RF components. We develop two methods for inference in the resulting hierarchical model: (1) a fully Bayesian method using blocked-Gibbs sampling; and (2) a fast, approximate method that employs alternating coordinate ascent of the conditional marginal likelihood. We develop these methods under Gaussian and Poisson noise models, and show that low-rank estimates substantially outperform full rank estimates in accuracy and speed using neural data from retina and V1."