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Abstract

The receptive field (RF) of a sensory neuron describes how the neuron integrates
sensory stimuli over time and space. In typical experiments with naturalistic or
flickering spatiotemporal stimuli, RFs are very high-dimensional, due to the large
number of coefficients needed to specify an integration profile across time and
space. Estimating these coefficients from small amounts of data poses a vari-
ety of challenging statistical and computational problems. Here we address these
challenges by developing Bayesian reduced rank regression methods for RF esti-
mation. This corresponds to modeling the RF as a sum of space-time separable
(i.e., rank-1) filters. This approach substantially reduces the number of parameters
needed to specify the RF, from 1K-10K down to mere 100s in the examples we
consider, and confers substantial benefits in statistical power and computational
efficiency. We introduce a novel prior over low-rank RFs using the restriction of
a matrix normal prior to the manifold of low-rank matrices, and use “localized”
row and column covariances to obtain sparse, smooth, localized estimates of the
spatial and temporal RF components. We develop two methods for inference in
the resulting hierarchical model: (1) a fully Bayesian method using blocked-Gibbs
sampling; and (2) a fast, approximate method that employs alternating ascent of
conditional marginal likelihoods. We develop these methods for Gaussian and
Poisson noise models, and show that low-rank estimates substantially outperform
full rank estimates using neural data from retina and V1.

1 Introduction

A neuron’s linear receptive field (RF) is a filter that maps high-dimensional sensory stimuli to a
one-dimensional variable underlying the neuron’s spike rate. In white noise or reverse-correlation
experiments, the dimensionality of the RF is determined by the number of stimulus elements in
the spatiotemporal window influencing a neuron’s probability of spiking. For a stimulus movie with
nx×ny pixels per frame, the RF has nxnynt coefficients, where nt is the (experimenter-determined)
number of movie frames in the neuron’s temporal integration window. In typical neurophysiology
experiments, this can result in RFs with hundreds to thousands of parameters, meaning we can think
of the RF as a vector in a very high dimensional space.

In high dimensional settings, traditional RF estimators like the whitened spike-triggered average
(STA) exhibit large errors, particularly with naturalistic or correlated stimuli. A substantial liter-
ature has therefore focused on methods for regularizing RF estimates to improve accuracy in the
face of limited experimental data. The Bayesian approach to regularization involves specifying a
prior distribution that assigns higher probability to RFs with particular kinds of structure. Popular
methods have involved priors to impose smallness, sparsity, smoothness, and localized structure in
RF coefficients[1, 2, 3, 4, 5].
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Here we develop a novel regularization method to exploit the fact that neural RFs can be modeled
as a low-rank matrices (or tensors). This approach is justified by the observation that RFs can be
well described by summing a small number of space-time separable filters [6, 7, 8, 9]. Moreover,
it can substantially reduce the number of RF parameters: a rank p receptive field in nxnynt di-
mensions requires only p(nxny + nt − 1) parameters, since a single space-time separable filter has
nxny spatial coefficients and nt − 1 temporal coefficients (i.e., for a temporal unit vector). When
p� min(nxny, nt), as commonly occurs in experimental settings, this parametrization yields con-
siderable savings.

In the statistics literature, the problem of estimating a low-rank matrix of regression coefficients is
known as reduced rank regression [10, 11]. This problem has received considerable attention in
the econometrics literature, but Bayesian formulations have tended to focus on non-informative or
minimally informative priors [12]. Here we formulate a novel prior for reduced rank regression using
a restriction of the matrix normal distribution [13] to the manifold of low-rank matrices. This results
in a marginally Gaussian prior over RF coefficients, which puts it on equal footing with “ridge”,
AR1, and other Gaussian priors. Moreover, under a linear-Gaussian response model, the posterior
over RF rows and columns are conditionally Gaussian, leading to fast and efficient sampling-based
inference methods. We use a “localized” form for the row and and column covariances in the matrix
normal prior, which have hyperparameters governing smoothness and locality of RF components
in space and time [5]. In addition to fully Bayesian sampling-based inference, we develop a fast
approximate inference method using coordinate ascent of the conditional marginal likelihoods for
temporal (column) and spatial (row) hyperparameters. We apply this method under linear-Gaussian
and linear-nonlinear-Poisson encoding models, and show that the latter gives the best performance
on neural data.

The paper is organized as follows. In Sec. 2, we describe the low-rank RF model with localized
priors. In Sec. 3, we describe a fully Bayesian inference method using the blocked-Gibbs sampling
with interleaved Metroplis Hastings steps. In Sec. 4, we introduce a fast method for approximate
inference using conditional empirical Bayesian hyperparameter estimates. In Sec. 5, we extend our
estimator to the linear-nonlinear Poisson encoding model. Finally, in Sec. 6, we show applications
to simulated and real neural datasets from retina and V1.

2 Hierarchical low-rank receptive field model

2.1 Response model (likelihood)

We begin by defining two probabilistic encoding models that will provide likelihood functions for
RF inference. Let yi denote the number of spikes that occur in response to a (dt × dx) matrix stimu-
lus Xi, where dt and dx denote the number of temporal and spatial elements in the RF, respectively.
Let K denote the neuron’s (dt × dx) matrix receptive field.

We will consider, first, a linear Gaussian encoding model:

yi|Xi ∼ N (x>i k + b, γ), (1)

where xi = vec(Xi) and k = vec(K) denote the vectorized stimulus and vectorized RF, respec-
tively, γ is the variance of the response noise, and b is a bias term. Second, we will consider a
linear-nonlinear-Poisson (LNP) encoding model

yi|Xi, ∼ Poiss(g(x>i k + b)). (2)

where g denotes the nonlinearity. Examples of g include exponential and soft rectifying function,
log(exp(·) + 1), both of which give rise to a concave log-likelihood [14].

2.2 Prior for low rank receptive field

We can represent an RF of rank p using the factorization

K = KtK
>
x , (3)

where the columns of the matrix Kt ∈ Rdt×p contain temporal filters and the columns of the matrix
Kx ∈ Rdx×p contain spatial filters.
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We define a prior over rank-p matrices using a restriction of the matrix normal distribution
MN (0, Cx, Ct). The prior can be written:

p(K|Ct, Cx) = 1
Z exp

(
− 1

2Tr[C−1x K>C−1t K]
)
, (4)

where the normalizer Z involves integration over the space of rank-p matrices, which has no known
closed-form expression. The prior is controlled by a “column” covariance matrix Ct ∈ Rdt×dt and
“row” covariance matrix Cx ∈ Rdx×dx , which govern the temporal and spatial RF components,
respectively.

If we express K in factorized form (eq. 3), we can rewrite the prior

p(K|Ct, Cx) = 1
Z exp

(
− 1

2Tr
[
(K>x C

−1
x Kx)(K>t C

−1
t Kt)

] )
. (5)

This formulation makes it clear that we have conditionally Gaussian priors on Kt and Kx, that is:
kt|kx, Cx, Ct ∼ N (0, A−1x ⊗ Ct),
kx|kt, Ct, Cx ∼ N (0, A−1t ⊗ Cx), (6)

where ⊗ denotes Kronecker product, and kt = vec(Kt) ∈ Rpdt×1, kx = vec(Kx) ∈ Rpdx×1, and
where we define Ax = K>x C

−1
x Kx and At = K>t C

−1
t Kt.

We define Ct and Cx have a parametric form controlled by hyperparameters θt and θx, respectively.
This form is adopted from the “automatic locality determination” (ALD) prior introduced in [5]. In
the ALD prior, the covariance matrix encodes the tendency for RFs to be localized in both space-time
and spatiotemporal frequency.

For the spatial covariance matrix Cx, the hyperparameters are θx = {ρ, µs, µf ,Φs,Φf}, where ρ is
a scalar determining the overall scale of the covariance; µs and µf are length-D vectors specifying
the center location of the RF support in space and spatial frequency, respectively (where D is the
number of spatial dimensions, e.g., “D=2” for standard 2D visual pixel stimuli). The positive definite
matrices Φs and Φf are D × D determine the size of the local region of RF support in space and
spatial frequency, respectively [15]. In the temporal covariance matrix Ct, the hyperparameters θt,
which are directly are analogous to θx, determine the localized RF structure in time and temporal
frequency.

Finally, we place a zero-mean Gaussian prior on the (scalar) bias term: b ∼ N (0, σ2
b ).

3 Posterior inference using Markov Chain Monte Carlo

For a complete dataset D = {X,y}, where X ∈ Rn×(dtdx) is a design matrix, and y is a vector of
responses, our goal is to infer the joint posterior over K and b,

p(K, b|D) ∝
∫ ∫

p(D|K, b)p(K|θt, θx)p(b|σ2
b )p(θt, θx, σ

2
b )dσ2

bdθtdθx. (7)

We develop an efficient Markov chain Monte Carlo (MCMC) sampling method using blocked-Gibbs
sampling. Blocked-Gibbs sampling is possible since the closed-form conditional priors in eq. 6
and the Gaussian likelihood yields closed-form “conditional marginal likelihood” for θt|(kx, θx, D)
and θx|(kt, θt, D), respectively1. The blocked-Gibbs first samples (σ2

b , θt, γ) from the condi-
tional evidence and simultaneously sample kt from the conditional posterior. Given the samples
of (σ2

b , θt, γ, b,kt), we then sample θx and kx similarly.

For sampling from the conditional evidence, we use the Metropolis Hastings (MH) algorithm to
sample the low dimensional space of hyperparameters. For sampling (b,kt) and kx, we use the
closed-form formula (will be introduced shortly) for the mean of the conditional posterior. The
details of our algorithm are as follows.

Step 1 Given (i-1)th samples of (kx, θx), we draw ith samples (b,kt, θt, σ2
b , γ) from

p(b(i),k
(i)
t , θ

(i)
t , σ2

b
(i)
, γ(i)|k(i−1)

x , θ(i−1)x ,D) = p(θ
(i)
t , σ2

b
(i)
, γ(i)|k(i−1)

x , θ(i−1)x ,D)

p(b(i),k
(i)
t |θ

(i)
t , σ2

b
(i)
, γ(i),k(i−1)

x , θ(i−1)x ,D),

1In this section and Sec.4, we fix the likelihood to Gaussian (eq. 1). An extension to the Poisson likelihood
model (eq. 2) will be described in Sec.5.
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which is divided into two parts2:

• We sample (θt, σ2
b , γ) from the conditional posterior given by

p(θt, σ
2
b , γ|kx, θx,D) ∝ p(θt, σ

2
b , γ)

∫
p(D|b,kt,kx, γ)p(b,kt|kx, θx, θt)dbdkt,

∝ p(θt, σ
2
b , γ)

∫
N (D|M ′xwt, γI)N (wt|0, Cwt

)dwt, (8)

where wt is a vector of [b kTt ]T , M ′x is concatenation of a vector of ones and the matrix
Mx, which is generated by projecting each stimulus Xi onto Kx and then stacking it in
each row, meaning that the i-th row of Mx is [vec(XiKx)]>, and Cwt

is a block diagonal
matrix whose diagonal is σ2

b and A−1x ⊗ Ct. Using the standard formula for a product of
two Gaussians, we obtain the closed form conditional evidence:

p(D|θt, σ2
b , γ,kx, θx) ≈ |2πΛt|

1
2

|2πγI| 12 |2πCwt
| 12

exp
[
1
2µ
>
t Λ−1t µt − 1

2γy
>y
]

(9)

where the mean and covariance of conditional posterior over wt given kx are given by

µt = 1
γΛtM

′T
x y, and Λt = (C−1wt

+ 1
γM

′T
x Mx)−1. (10)

We use the MH algorithm to search over the low dimensional hyperparameter space, with
the conditional evidence (eq. 9) as the target distribution, under a uniform hyperprior on
(θt, σ2

b , γ).

• We sample (b,kt) from the conditional posterior given in eq. 10.

Step 2 Given the ith samples of (b,kt, θt, σ2
b , γ), we draw ith samples (kx, θx) from

p(k(i)
x , θ(i)x |b(i),k

(i)
t , σ2

b
(i)
, θ

(i)
t , γ(i),D) = p(θ(i)x |b(i),k

(i)
t , θ

(i)
t , σ2

b
(i)
, γ(i),D),

p(k(i)
x |θ(i)x , b(i),k

(i)
t , σ2

b
(i)
, θ

(i)
t , γ(i),D),

which is divided into two parts:

• We sample θx from the conditional posterior given by

p(θx|b,kt, θt, σ2
b , γ,D) ∝ p(θx)

∫
p(D|b,kt,kx, γ)p(kx|kt, θt, θx)dkx, (11)

∝ p(θx)

∫
N (D|Mtkx + b1, γI)N (kx|0, A−1t ⊗ Cx)dkx,

where the matrixMt is generated by projecting each stimulusXi ontoKt and then stacking
it in each row, meaning that the i-th row of Mt is [vec([X>i Kt])]

>. Using the standard
formula for a product of two Gaussians, we obtain the closed form conditional evidence:

p(D|θx,kt, b) =
|2πΛx|

1
2

|2πγI| 12 |2π(A−1t ⊗ Cx)| 12
exp

[
1
2µ
>
x Λ−1x µx − 1

2γ (y − b1)T (y − b1)
]
,

where the mean and covariance of conditional posterior over kx given (b,kt) are given by

µx = 1
γΛxM

>
t (y − b1), and Λx = (At ⊗ C−1x + 1

γM
>
t Mt)

−1. (12)

As in Step 1, with a uniform hyperprior on θx, the conditional evidence is the target distri-
bution in the MH algorithm.

• We sample kx from the conditional posterior given in eq. 12.

A summary of this algorithm is given in Algorithm 1.

2We omit the sample index, the superscript i and (i-1), for notational cleanness.
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Algorithm 1 fully Bayesian low-rank RF inference using blocked-Gibbs sampling
Given data D, conditioned on samples for other variables, iterate the following:

1. Sample for (b,kt, σ2
b , θt, γ) from the conditional evidence for (θt, σ2

b , γ) (in eq. 8) and the
conditional posterior over (b,kt) (in eq. 10).

2. Sample for (kx, θx) from the conditional evidence for θx (in eq. 11) and the conditional
posterior over kx (in eq. 12).

Until convergence.

4 Approximate algorithm for fast posterior inference

Here we develop an alternative, approximate algorithm for fast posterior inference. Instead of in-
tegrating over hyperparameters, we attempt to find point estimates that maximize the conditional
marginal likelihood. This resembles empirical Bayesian inference, where the hyperparameters are
set by maximizing the full marginal likelihood. In our model, the evidence has no closed form; how-
ever, the conditional evidence for (θt, σ2

b , γ) given (kx, θx) and the conditional evidence for θx given
(b,kt, θt, σ2

b , γ) are given in closed form (in eq. 8 and eq. 11). Thus, we alternate (1) maximizing the
conditional evidence to set (θt, σ2

b , γ) and finding the MAP estimates of (b,kt), and (2) maximizing
the conditional evidence to set θx and finding the MAP estimates of kx, that is,

θ̂t, γ̂, σ̂
2
b = arg max

θt,σ2
b ,γ

p(D|θt, σ2
b , γ, k̂x, θ̂x), (13)

b̂, k̂t = arg max
b,kt

p(b,kt|θ̂t, γ̂, σ̂2
b , k̂x, θ̂x,D), (14)

θ̂x = arg max
θx

p(D|θx, b̂, k̂t, θ̂t, γ̂, σ̂2
b ), (15)

k̂x = arg max
kx

p(kx|θ̂x, b̂, k̂t, θ̂t, γ̂, σ̂2
b ,D). (16)

The approximate algorithm works well if the conditional evidence is tightly concentrated around its
maximum. Note that if the hyperparameters are fixed, the iterative updates of (b,kt) and kx given
above amount to alternating coordinate ascent of the posterior over (b,K).

5 Extension to Poisson likelihood

When the likelihood is non-Gaussian, blocked-Gibbs sampling is not tractable, because we do not
have a closed form expression for conditional evidence. Here, we introduce a fast, approximate
inference algorithm for the low-rank RF model under the LNP likelihood. The basic steps are the
same as those in the approximate algorithm (Sec.4). However, we make a Gaussian approximation to
the conditional posterior over (b,kt) given kx via the Laplace approximation. We then approximate
the conditional evidence for (θt, σ2

b ) given kx at the posterior mode of (b,kt) given kx. The details
are as follows.

The conditional evidence for θt given kx is

p(D|θt, σ2
b ,kx, θx) ∝

∫
Poiss(y|g(M ′xwt))N (wt|0, Cwt

)dwt (17)

The integrand is proportional to the conditional posterior over wt given kx, which we approximate
to a Gaussian distribution via Laplace approximation

p(wt|θt, σ2
b ,kx,D) ≈ N (ŵt,Σt), (18)

where ŵt is the conditional MAP estimate of wt obtained by numerically maximizing the log-
conditional posterior for wt (e.g., using Newton’s method. See Appendix A),

log p(wt|θt, σ2
b ,kx,D) = y> log(g(M ′xwt))− g(M ′xwt)− 1

2w
>
t C
−1
wt

wt + c, (19)

and Σt is the covariance of the conditional posterior obtained by the second derivative of the log-
conditional posterior around its mode Σ−1t = Ht + C−1wt

, where the Hessian of the negative log-
likelihood is denoted by Ht = − ∂2

∂w2
t

log p(D|wt,M
′
x).
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Figure 1: Simulated data. Data generated from the linear Gaussian response model with a rank-2 RF
(16 by 64 pixels: 1024 parameters for full-rank model; 160 for rank-2 model). A. True rank-2 RF
(left). Estimates obtained by ML, full-rank ALD, low-rank approximate method, and blocked-Gibbs
sampling, using 250 samples (top), and using 2000 samples (bottom), respectively. B. Average mean
squared error of the RF estimate by each method (average over 10 independent repetitions).

Under the Gaussian posterior (eq. 18), the log conditional evidence (log of eq. 17) at the posterior
mode wt = ŵt is simply

log p(D|θt, σ2
b ,kx) ≈ log p(D|ŵt,M

′
x)− 1

2ŵ
>
t C
−1
wt

ŵt − 1
2 log |Cwt

Σ−1t |,

which we maximize to set θt and σ2
b . Due to space limit, we omit the derivations for the conditional

posterior for kx and the conditional evidence for θx given (b,kt). (See Appendix B).

6 Results

6.1 Simulations

We first tested the performance of the blocked-Gibbs sampling and the fast approximate algorithm
on a simulated Gaussian neuron with a rank-2 RF of 16 temporal bins and 64 spatial pixels shown in
Fig. 1A. We compared these methods with the maximum likelihood estimate and the full-rank ALD
estimate. Fig. 1 shows that the low-rank RF estimates obtained by the blocked-Gibbs sampling
and the approximate algorithm perform similarly, and achieve lower mean squared error than the
full-rank RF estimates.
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A B

   2000
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full-rankML low-rank 
ML
full-rank 
low-rank 

250 500 1000 2000
0

0.5

1

1.5

2

ML 
full-rank 
low-rank 

full-rankML low-rank 
linear Gaussian Linear Nonlinear Poisson

Gaussian

LNP

Figure 2: Simulated data. Data generated from the linear-nonlinear Poisson (LNP) response model
with a rank-2 RF (shown in Fig. 1A) and “softrect” nonlinearity. A. Estimates obtained by ML, full-
rank ALD, low-rank approximate method under the linear Gaussian model, and the methods under
the LNP model, using 250 (top) and 2000 (bottom) samples, respectively. B. Average mean squared
error of the RF estimate (from 10 independent repetitions). The low-rank RF estimates under the
LNP model perform better than those under the linear Gaussian model.

We then tested the performance of the above methods on a simulated linear-nonlinear Poisson (LNP)
neuron with the same RF and the softrect nonlinearity. We estimated the RF using each method
under the linear Gaussian model as well as under the LNP model. Fig. 2 shows that the low-rank RF
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Figure 3: Comparison of low-rank RF estimates for V1 simple cells (using white noise flickering
bars stimuli [16]). A: Relative likelihood per test stimulus (left) and low-rank RF estimates for
three different ranks (right). Relative likelihood is the ratio of the test likelihood of rank-1 STA to
that of other estimates. Using 1 minutes of training data, the rank-2 RF estimates obtained by the
blocked-Gibbs sampling and the approximate method achieve the highest test likelihood (estimates
are shown in the top row), while rank-1 STA achieves the highest test likelihood, since more noise is
added to the low-rank STA as the rank increases (estimates are shown in the bottom row). Relative
likelihood under full rank ALD is 2.25. B: Similar plot for another V1 simple cell. The rank-4
estimates obtained by the blocked-Gibbs sampling and the approximate method achieve the highest
test likelihood for this cell. Relative likelihood under full rank ALD is 2.17.

estimates perform better than full-rank estimates regardless of the model, and that the low-rank RF
estimates under the LNP model achieved the lowest MSE.

6.2 Application to neural data

We applied our methods to estimate the RFs of V1 simple cells and retinal ganglion cells (RGCs).
The details of data collection are described in [16, 9]. We performed 10-fold cross-validation using
1 minute of training and 2 minutes of test data. In Fig. 3 and Fig. 4, we show the average test
likelihood as a function of RF rank under the linear Gaussian model. We also show the low-rank
RF estimates obtained by our methods as well as the low-rank STA. The low-rank STA (rank-p) is
computed as K̂STA,p =

∑p
i diuiv

>
i , where di is the i-th singular value, ui and vi are the i-th left

and right singular vectors, respectively. If the stimulus distribution is non-Gaussian, the low-rank
STA will have larger bias than the low-rank ALD estimate.
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Figure 4: Comparison of low-rank
RF estimates for retinal data (using
binary white noise stimuli [9]). The
RF consists of 10 by 10 spatial pixels
and 25 temporal bins (2500 RF coef-
ficients). A: Relative likelihood per
test stimulus (left), top three left sin-
gular vectors (middle) and right sin-
gular vectors (right) of estimated RF
for an off-RGC cell. The sampling-
based RF estimate benefits from a
rank-3 representation, making use
of three distinct spatial and tempo-
ral components, whereas the perfor-
mance of the low-rank STA degrades
above rank 1. Relative likelihood
under full rank ALD is 1.0146. B:
Similar plot for on-RGC cell. Rel-
ative likelihood under full rank ALD
is 1.006. Both estimates perform best
with rank 1.
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