Implicit Regularization in Deep Learning May Not Be Explainable by Norms

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Noam Razin, Nadav Cohen

Abstract

Mathematically characterizing the implicit regularization induced by gradient-based optimization is a longstanding pursuit in the theory of deep learning. A widespread hope is that a characterization based on minimization of norms may apply, and a standard test-bed for studying this prospect is matrix factorization (matrix completion via linear neural networks). It is an open question whether norms can explain the implicit regularization in matrix factorization. The current paper resolves this open question in the negative, by proving that there exist natural matrix factorization problems on which the implicit regularization drives all norms (and quasi-norms) towards infinity. Our results suggest that, rather than perceiving the implicit regularization via norms, a potentially more useful interpretation is minimization of rank. We demonstrate empirically that this interpretation extends to a certain class of non-linear neural networks, and hypothesize that it may be key to explaining generalization in deep learning.