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Abstract

Mathematically characterizing the implicit regularization induced by gradient-
based optimization is a longstanding pursuit in the theory of deep learning. A
widespread hope is that a characterization based on minimization of norms may
apply, and a standard test-bed for studying this prospect is matrix factorization
(matrix completion via linear neural networks). It is an open question whether
norms can explain the implicit regularization in matrix factorization. The current
paper resolves this open question in the negative, by proving that there exist natural
matrix factorization problems on which the implicit regularization drives all norms
(and quasi-norms) towards infinity. Our results suggest that, rather than perceiving
the implicit regularization via norms, a potentially more useful interpretation is
minimization of rank. We demonstrate empirically that this interpretation extends
to a certain class of non-linear neural networks, and hypothesize that it may be key
to explaining generalization in deep learning.1

1 Introduction
A central mystery in deep learning is the ability of neural networks to generalize when having far
more learnable parameters than training examples. This generalization takes place even in the absence
of any explicit regularization (see [88]), thus a view by which gradient-based optimization induces
an implicit regularization has arisen (see, e.g., [64]). Mathematically characterizing this implicit
regularization is regarded as a major open problem in the theory of deep learning (cf. [66]). A
widespread hope (initially articulated in [65]) is that a characterization based on minimization of
norms (or quasi-norms2) may apply. Namely, it is known that for linear regression, gradient-based
optimization converges to solution with minimal `2 norm (see for example Section 5 in [88]), and
the hope is that this result can carry over to neural networks if we allow `2 norm to be replaced by a
different (possibly architecture- and optimizer-dependent) norm (or quasi-norm).

A standard test-bed for studying implicit regularization in deep learning is matrix completion (cf. [34,
8]): given a randomly chosen subset of entries from an unknown matrix W ∗, the task is to recover
the unseen entries. This may be viewed as a prediction problem, where each entry in W ∗ stands
for a data point: observed entries constitute the training set, and the average reconstruction error
over the unobserved entries is the test error, quantifying generalization. Fitting the observed entries
is obviously an underdetermined problem with multiple solutions. However, an extensive body
of work (see [26] for a survey) has shown that if W ∗ is low-rank, certain technical assumptions
(e.g. “incoherence”) are satisfied and sufficiently many entries are observed, then various algorithms
can achieve approximate or even exact recovery. Of these, a well-known method based upon convex
optimization finds the minimal nuclear norm matrix among those fitting observations (see [15]).

1Due to lack of space, a significant portion of the paper is deferred to the appendices. We refer the reader to
[72] for a self-contained version of the text.

2A quasi-norm ‖·‖ on a vector space V is a function from V to R≥0 that satisfies the same axioms as a norm,
except for the triangle inequality ∀v1, v2 ∈ V : ‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖, which is replaced by the weaker
requirement ∃c ≥ 1 s.t. ∀v1, v2 ∈ V : ‖v1 + v2‖ ≤ c · (‖v1‖+ ‖v2‖).
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One may try to solve matrix completion using shallow neural networks. A natural approach, matrix
factorization, boils down to parameterizing the solution as a product of two matrices — W =
W2W1 — and optimizing the resulting (non-convex) objective for fitting observations. Formally, this
can be viewed as training a depth 2 linear neural network. It is possible to explicitly constrain the rank
of the produced solution by limiting the shared dimension of W1 and W2. However, Gunasekar et
al. have shown in [34] that in practice, even when the rank is unconstrained, running gradient descent
with small learning rate (step size) and initialization close to the origin (zero) tends to produce low-
rank solutions, and thus allows accurate recovery if W ∗ is low-rank. Accordingly, they conjectured
that the implicit regularization in matrix factorization boils down to minimization of nuclear norm:

Conjecture 1 (from [34], informally stated). With small enough learning rate and initialization
close enough to the origin, gradient descent on a full-dimensional matrix factorization converges to a
minimal nuclear norm solution.

In a subsequent work — [8] — Arora et al. considered deep matrix factorization, obtained by
adding depth to the setting studied in [34]. Namely, they considered solving matrix completion by
training a depth L linear neural network, i.e. by running gradient descent on the parameterization
W = WLWL−1 · · ·W1, with L ∈ N arbitrary (and the dimensions of {Wl}Ll=1 set such that rank
is unconstrained). It was empirically shown that deeper matrix factorizations (larger L) yield more
accurate recovery when W ∗ is low-rank. Moreover, it was conjectured that the implicit regularization,
for any depth L ≥ 2, can not be described as minimization of a mathematical norm (or quasi-norm):

Conjecture 2 (based on [8], informally stated). Given a (shallow or deep) matrix factorization, for
any norm (or quasi-norm) ‖·‖, there exists a set of observed entries with which small learning rate
and initialization close to the origin can not ensure convergence of gradient descent to a minimal (in
terms of ‖·‖) solution.

Conjectures 1 and 2 contrast each other, and more broadly, represent opposing perspectives on the
question of whether norms may be able to explain implicit regularization in deep learning. In this
paper, we resolve the tension between the two conjectures by affirming the latter. In particular, we
prove that there exist natural matrix completion problems where fitting observations via gradient
descent on a depth L ≥ 2 matrix factorization leads — with probability 0.5 or more over (arbitrarily
small) random initialization — all norms (and quasi-norms) to grow towards infinity, while the rank
essentially decreases towards its minimum. This result is in fact stronger than the one suggested
by Conjecture 2, in the sense that: (i) not only is each norm (or quasi-norm) disqualified by some
setting, but there are actually settings that jointly disqualify all norms (and quasi-norms); and (ii) not
only are norms (and quasi-norms) not necessarily minimized, but they can grow towards infinity. We
corroborate the analysis with empirical demonstrations.

Our findings imply that, rather than viewing implicit regularization in (shallow or deep) matrix
factorization as minimizing a norm (or quasi-norm), a potentially more useful interpretation is
minimization of rank. As a step towards assessing the generality of this interpretation, we empirically
explore an extension of matrix factorization to tensor factorization.3 Our experiments show that in
analogy with matrix factorization, gradient descent on a tensor factorization tends to produce solutions
with low rank, where rank is defined in the context of tensors.4 Similarly to how matrix factorization
corresponds to a linear neural network whose input-output mapping is represented by a matrix, it is
known (see [22]) that tensor factorization corresponds to a convolutional arithmetic circuit (certain
type of non-linear neural network) whose input-output mapping is represented by a tensor. We thus
obtain a second exemplar of a neural network architecture whose implicit regularization strives to
lower a notion of rank for its input-output mapping. This leads us to believe that the phenomenon
may be general, and formalizing notions of rank for input-output mappings of contemporary models
may be key to explaining generalization in deep learning.

The remainder of the paper is organized as follows. Section 2 presents the deep matrix factorization
model. Section 3 delivers our analysis, showing that its implicit regularization can drive all norms to
infinity. Experiments, with both the analyzed setting and tensor factorization, are given in Section 4.
For conciseness, we defer our summary to Appendix A, and review related work in Appendix B.

3For the sake of this paper, tensors can be thought of as N -dimensional arrays, with N ∈ N arbitrary
(matrices correspond to the special case N = 2).

4The rank of a tensor is the minimal number of summands required to express it, where each summand is an
outer product between vectors.
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2 Deep matrix factorization

Suppose we would like to complete a d-by-d′ matrix based on a set of observations {bi,j ∈ R}(i,j)∈Ω,
where Ω ⊂ {1, 2, . . . , d}× {1, 2, . . . , d′}. A standard (underdetermined) loss function for the task is:

` : Rd,d
′
→ R≥0 , `(W ) =

1

2

∑
(i,j)∈Ω

(
(W )i,j − bi,j

)2
. (1)

Employing a depth L matrix factorization, with hidden dimensions d1, d2, . . . , dL−1 ∈ N, amounts
to optimizing the overparameterized objective:

φ(W1,W2, . . . ,WL) := `(WL:1) =
1

2

∑
(i,j)∈Ω

(
(WL:1)i,j − bi,j

)2
, (2)

where Wl ∈ Rdl,dl−1 , l = 1, 2, . . . , L, with dL := d, d0 := d′, and:
WL:1 := WLWL−1 · · ·W1 , (3)

referred to as the product matrix of the factorization. Our interest lies on the implicit regularization
of gradient descent, i.e. on the type of product matrices (Equation (3)) it will find when applied to the
overparameterized objective (Equation (2)). Accordingly, and in line with prior work (cf. [34, 8]), we
focus on the case in which the search space is unconstrained, meaning min{dl}Ll=0 = min{d0, dL}
(rank is not limited by the parameterization).

As a theoretical surrogate for gradient descent with small learning rate and near-zero initialization,
similarly to [34] and [8] (as well as other works analyzing linear neural networks, e.g. [75, 6, 53, 7]),
we study gradient flow (gradient descent with infinitesimally small learning rate):

Ẇl(t) := d
dtWl(t) = − ∂

∂Wl
φ(W1(t),W2(t), . . . ,WL(t)) , t ≥ 0 , l = 1, 2, . . . , L , (4)

and assume balancedness at initialization, i.e.:
Wl+1(0)>Wl+1(0) = Wl(0)Wl(0)> , l = 1, 2, . . . , L− 1 . (5)

In particular, when considering random initialization, we assume that {Wl(0)}Ll=1 are drawn from a
joint probability distribution by which Equation (5) holds almost surely. This is an idealization of
standard random near-zero initializations, e.g. Xavier ([31]) and He ([40]), by which Equation (5)
holds approximately with high probability (note that the equation holds exactly in the standard
“residual” setting of identity initialization — cf. [38, 10]). The condition of balanced initialization
(Equation (5)) played an important role in the analysis of [6], facilitating derivation of a differential
equation governing the product matrix of a linear neural network (see Lemma 4 in Subappendix G.2.1).
It was shown in [6] empirically (and will be demonstrated again in Section 4) that there is an excellent
match between the theoretical predictions of gradient flow with balanced initialization, and its practical
realization via gradient descent with small learning rate and near-zero initialization. Other works
(e.g. [7, 45]) have supported this match theoretically, and we provide additional support in Appendix D
by extending our theory to the case of unbalanced initialization (Equation (5) holding approximately).

Formally stated, Conjecture 1 from [34] treats the case L = 2, where the product matrix WL:1

(Equation (3)) holds α ·Winit at initialization, Winit being a fixed arbitrary full-rank matrix and α a
varying positive scalar. Taking time to infinity (t→∞) and then initialization size to zero (α→ 0+),
the conjecture postulates that if the limit product matrix W̄L:1 := limα→0+ limt→∞WL:1 exists
and is a global optimum for the loss `(·) (Equation (1)), i.e. `(W̄L:1) = 0, then it will be a global
optimum with minimal nuclear norm, meaning W̄L:1 ∈ argminW :`(W )=0 ‖W‖nuclear. In contrast
to Conjecture 1, Conjecture 2 from [8] can be interpreted as saying that for any depth L ≥ 2 and
any norm or quasi-norm ‖·‖, there exist observations {bi,j}(i,j)∈Ω for which global optimization
of loss (limα→0+ limt→∞ `(W1:L) = 0) does not imply minimization of ‖·‖ (i.e. we may have
limα→0+ limt→∞ ‖W1:L‖ 6= minW :`(W )=0 ‖W‖). Due to technical subtleties (for example the
requirement of Conjecture 1 that a double limit of the product matrix with respect to time and
initialization size exists), Conjectures 1 and 2 are not necessarily contradictory. However, they are in
direct opposition in terms of the stances they represent — one supports the prospect of norms being
able to explain implicit regularization in matrix factorization, and the other does not. The current
paper seeks a resolution.

3 Implicit regularization can drive all norms to infinity
In this section we prove that for matrix factorization of depth L ≥ 2, there exist observations
{bi,j}(i,j)∈Ω with which optimizing the overparameterized objective (Equation (2)) via gradient flow
(Equations (4) and (5)) leads — with probability 0.5 or more over random (“symmetric”) initializa-
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tion — all norms and quasi-norms of the product matrix (Equation (3)) to grow towards infinity,
while its rank essentially decreases towards minimum. By this we not only affirm Conjecture 2, but
in fact go beyond it in the following sense: (i) the conjecture allows chosen observations to depend
on the norm or quasi-norm under consideration, while we show that the same set of observations can
apply jointly to all norms and quasi-norms; and (ii) the conjecture requires norms and quasi-norms to
be larger than minimal, while we establish growth towards infinity.

For simplicity of presentation, the current section delivers our construction and analysis in the setting
d = d′ = 2 (i.e. 2-by-2 matrix completion) — extension to different dimensions is straightforward
(see Appendix E). We begin (Subsection 3.1) by introducing our chosen observations {bi,j}(i,j)∈Ω

and discussing their properties. Subsequently (Subsection 3.2), we show that with these observations,
decreasing loss often increases all norms and quasi-norms while lowering rank. Minimization of
loss is treated thereafter (Subsection 3.3). Finally (Subsection 3.4), robustness of our construction to
perturbations is established.

3.1 A simple matrix completion problem
Consider the problem of completing a 2-by-2 matrix based on the following observations:

Ω = {(1, 2), (2, 1), (2, 2)} , b1,2 = 1 , b2,1 = 1 , b2,2 = 0 . (6)
The solution set for this problem (i.e. the set of matrices obtaining zero loss) is:

S =
{
W ∈ R2,2 : (W )1,2 = 1, (W )2,1 = 1, (W )2,2 = 0

}
. (7)

Proposition 1 below states that minimizing a norm or quasi-norm along W ∈ S requires confining
(W )1,1 to a bounded interval, which for Schatten-p (quasi-)norms (in particular for nuclear, Frobenius
and spectral norms)5 is simply the singleton {0}.
Proposition 1. For any norm or quasi-norm over matrices ‖·‖ and any ε > 0, there exists a bounded
interval I‖·‖,ε ⊂ R such that if W ∈ S is an ε-minimizer of ‖·‖ (i.e. ‖W‖ ≤ infW ′∈S ‖W ′‖ + ε)
then necessarily (W )1,1 ∈ I‖·‖,ε. If ‖·‖ is a Schatten-p (quasi-)norm, then in addition W ∈ S
minimizes ‖·‖ (i.e. ‖W‖ = infW ′∈S ‖W ′‖) if and only if (W )1,1 = 0.

Proof sketch (for complete proof see Subappendix G.3). The (weakened) triangle inequality allows
us to lower bound ‖·‖ by |(W )1,1| (up to multiplicative and additive constants). Thus, the set of
(W )1,1 values corresponding to ε-minimizers must be bounded. If ‖·‖ is a Schatten-p (quasi-)norm, a
straightforward analysis shows it is monotonically increasing with respect to |(W )1,1|, implying it is
minimized if and only if (W )1,1 = 0.

In addition to norms and quasi-norms, we are also interested in the evolution of rank throughout
optimization of a deep matrix factorization. More specifically, we are interested in the prospect
of rank being implicitly minimized, as demonstrated empirically in [34, 8]. The discrete nature
of rank renders its direct analysis unfavorable from a dynamical perspective (the rank of a matrix
implies little about its proximity to low-rank), thus we consider the following surrogate measures:
(i) effective rank (Definition 1 below; from [74]) — a continuous extension of rank used for numerical
analyses; and (ii) distance from infimal rank (Definition 2 below) — (Frobenius) distance from the
minimal rank that a given set of matrices may approach. According to Proposition 2 below, these
measures independently imply that, although all solutions to our matrix completion problem — i.e. all
W ∈ S (see Equation (7)) — have rank 2, it is possible to essentially minimize the rank to 1 by
taking |(W )1,1| → ∞. Recalling Proposition 1, we conclude that in our setting, there is a direct
contradiction between minimizing norms or quasi-norms and minimizing rank — the former requires
confinement to some bounded interval, whereas the latter demands divergence towards infinity. This
is the critical feature of our construction, allowing us to deem whether the implicit regularization in
deep matrix factorization favors norms (or quasi-norms) over rank or vice versa.

Definition 1 (from [74]). The effective rank of a matrix 0 6=W ∈Rd,d′ with singular values
{σr(W )}min{d,d′}

r=1 is defined to be erank(W ) := exp{H(ρ1(W ), ρ2(W ), . . . , ρmin{d,d′}(W ))},
where {ρr(W ) := σr(W )/

∑min{d,d′}
r′=1

σr′ (W )}min{d,d′}
r=1 is a distribution induced by the singular values,

5For p∈ (0,∞], the Schatten-p (quasi-)norm of a matrixW ∈Rd,d′ with singular values {σr(W )}min{d,d′}
r=1

is defined as
(∑min{d,d′}

r=1 σp
r (W )

)1/p if p <∞ and as max{σ(W )}min{d,d′}
r=1 if p =∞. It is a norm if p ≥ 1

and a quasi-norm if p < 1. Notable special cases are nuclear (trace), Frobenius and spectral norms, corresponding
to p = 1, 2 and∞ respectively.
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and H(ρ1(W ), ρ2(W ), . . . , ρmin{d,d′}(W )) := −
∑min{d,d′}
r=1 ρr(W ) · ln ρr(W ) is its (Shannon)

entropy (by convention 0 · ln 0 = 0).

Definition 2. For a matrix space Rd,d′ , we denote by D(S,S ′) the (Frobenius) distance between
two sets S,S ′ ⊂ Rd,d′ (i.e. D(S,S ′) := inf{‖W −W ′‖Fro : W ∈ S,W ′ ∈ S ′}), by D(W,S ′)
the distance between a matrix W ∈ Rd,d′ and the set S ′ (i.e. D(W,S ′) := inf{‖W −W ′‖Fro :
W ′ ∈ S ′}), and by Mr, for r = 0, 1, . . . ,min{d, d′}, the set of matrices with rank r or less
(i.e.Mr := {W ∈ Rd,d′ : rank(W ) ≤ r}). The infimal rank of the set S — denoted irank(S) — is
defined to be the minimal r such that D(S,Mr) = 0. The distance of a matrix W ∈ Rd,d′ from the
infimal rank of S is defined to be D(W,Mirank(S)).

Proposition 2. The effective rank (Definition 1) takes the values (1, 2] along S (Equation (7)). For
W ∈ S, it is maximized when (W )1,1 = 0, and monotonically decreases to 1 as |(W )1,1| grows.
Correspondingly, the infimal rank (Definition 2) of S is 1, and the distance of W ∈ S from this
infimal rank is maximized when (W )1,1 = 0, monotonically decreasing to 0 as |(W )1,1| grows.

Proof sketch (for complete proof see Appendix G.4). Analyzing the singular values of W ∈ S —
σ1(W ) ≥ σ2(W ) ≥ 0 — reveals that: (i) σ1(W ) attains a minimal value of 1 when (W )1,1 = 0,
monotonically increasing to∞ as |(W )1,1| grows; and (ii) σ2(W ) attains a maximal value of 1 when
(W )1,1 = 0, monotonically decreasing to 0 as |(W )1,1| grows. The results for effective rank, infimal
rank and distance from infimal rank readily follow from this characterization.

3.2 Decreasing loss increases norms
Consider the process of solving our matrix completion problem (Subsection 3.1) with gradient flow
over a depth L ≥ 2 matrix factorization (Section 2). Theorem 1 below states that if the product
matrix (Equation (3)) has positive determinant at initialization, lowering the loss leads norms and
quasi-norms to increase, while the rank essentially decreases.
Theorem 1. Suppose we complete the observations in Equation (6) by employing a depth L ≥ 2
matrix factorization, i.e. by minimizing the overparameterized objective (Equation (2)) via gradient
flow (Equations (4) and (5)). Denote by WL:1(t) the product matrix (Equation (3)) at time t ≥ 0
of optimization, and by `(t) := `(WL:1(t)) the corresponding loss (Equation (1)). Assume that
det(WL:1(0)) > 0. Then, for any norm or quasi-norm over matrices ‖·‖:

‖WL:1(t)‖ ≥ a‖·‖ ·
1√
`(t)
− b‖·‖ , t ≥ 0 , (8)

where b‖·‖ := max{
√

2a‖·‖, 8c
2
‖·‖maxi,j∈{1,2}

∥∥eie>j ∥∥}, a‖·‖ :=
∥∥e1e

>
1

∥∥ /(√2c‖·‖), the vectors
e1, e2 ∈ R2 form the standard basis, and c‖·‖ ≥ 1 is a constant with which ‖·‖ satisfies the weakened
triangle inequality (see Footnote 2). On the other hand:

erank(WL:1(t)) ≤ infW ′∈S erank(W ′) + 2
√

12
ln(2) ·

√
`(t) , t ≥ 0 , (9)

D(WL:1(t),Mirank(S)) ≤ 3
√

2 ·
√
`(t) , t ≥ 0 , (10)

where erank(·) stands for effective rank (Definition 1), and D(· ,Mirank(S)) represents distance
from the infimal rank (Definition 2) of the solution set S (Equation (7)).

Proof sketch (for complete proof see Subappendix G.5). Using a dynamical characterization from
[8] for the singular values of the product matrix (restated in Subappendix G.2.1 as Lemma 5), we
show that the latter’s determinant does not change sign, i.e. it remains positive. This allows us
to lower bound |(WL:1)1,1(t)| by 1/

√
`(t) (up to multiplicative and additive constants). Relating

|(WL:1)1,1(t)| to (quasi-)norms, effective rank and distance from infimal rank then leads to the
desired bounds.

An immediate consequence of Theorem 1 is that, if the product matrix (Equation (3)) has positive
determinant at initialization, convergence to zero loss leads all norms and quasi-norms to grow to
infinity, while the rank is essentially minimized. This is formalized in Corollary 1 below.
Corollary 1. Under the conditions of Theorem 1, global optimization of loss, i.e. limt→∞ `(t) = 0,
implies that for any norm or quasi-norm over matrices ‖·‖ we have that limt→∞ ‖WL:1(t)‖ = ∞,
where WL:1(t) is the product matrix of the deep factorization (Equation (3)) at time t
of optimization. On the other hand: limt→∞ erank(WL:1(t)) = infW ′∈S erank(W ′) and
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limt→∞D(WL:1(t),Mirank(S)) = 0, where erank(·) stands for effective rank (Definition 1), and
D(· ,Mirank(S)) represents distance from the infimal rank (Definition 2) of the solution set S (Equa-
tion (7)).

Proof. Taking the limit `(t)→ 0 in the bounds given by Theorem 1 establishes the results.

Theorem 1 and Corollary 1 imply that in our setting (Subsection 3.1), where minimizing norms
(or quasi-norms) and minimizing rank contradict each other, the implicit regularization of deep
matrix factorization is willing to completely give up on the former in favor of the latter, at least
on the condition that the product matrix (Equation (3)) has positive determinant at initialization.
How probable is this condition? By Proposition 3 below, it holds with probability 0.5 if the product
matrix is initialized by any one of a wide array of common distributions, including matrix Gaussian
distribution with zero mean and independent entries, and a product of such. We note that rescaling
(multiplying by α > 0) initialization does not change the sign of product matrix’s determinant,
therefore as postulated by Conjecture 2, initialization close to the origin (along with small learning
rate) can not ensure convergence to solution with minimal norm or quasi-norm.
Proposition 3. If W ∈ Rd,d is a random matrix whose entries are drawn independently from
continuous distributions, each symmetric about the origin, then Pr(det(W ) > 0) = Pr(det(W ) <
0) = 0.5. Furthermore, for L ∈ N, if W1,W2, . . . ,WL ∈ Rd,d are random matrices drawn
independently from continuous distributions, and there exists l ∈ {1, 2, . . . , L} with Pr(det(Wl) >
0) = 0.5, then Pr(det(WLWL−1 · · ·W1) > 0) = Pr(det(WLWL−1 · · ·W1) < 0) = 0.5.

Proof sketch (for complete proof see Subappendix G.6). Multiplying a row of W by −1 keeps its
distribution intact while flipping the sign of its determinant. This implies Pr(det(W ) > 0) =
Pr(det(W ) < 0). The first result then follows from the fact that a matrix drawn from a continuous
distribution is almost surely non-singular. The second result is an outcome of the same fact, as well
as the multiplicativity of determinant and the law of total probability.

3.3 Convergence to zero loss
It is customary in the theory of deep learning (cf. [34, 36, 8]) to distinguish between implicit
regularization — which concerns the type of solutions found in training — and the complementary
question of whether training loss is globally optimized. We supplement our implicit regularization
analysis (Subsection 3.2) by addressing this complementary question in two ways: (i) in Section 4
we empirically demonstrate that on the matrix completion problem we analyze (Subsection 3.1),
gradient descent over deep matrix factorizations (Section 2) indeed drives training loss towards global
optimum, i.e. towards zero; and (ii) in Proposition 4 below we theoretically establish convergence to
zero loss for the special case of depth 2 and scaled identity initialization (treatment of additional depths
and initialization schemes is left for future work). We note that when combined with Corollary 1,
Proposition 4 affirms that in the latter special case, all norms and quasi-norms indeed grow to infinity
while rank is essentially minimized.
Proposition 4. Consider the setting of Theorem 1 in the special case of depth L = 2 and initial
product matrix (Equation (3)) WL:1(0) = α · I , where I stands for the identity matrix and α ∈ (0, 1].
Under these conditions limt→∞ `(t) = 0, i.e. the training loss is globally optimized.

Proof sketch (for complete proof see Subappendix G.7). We first establish that the product matrix is
positive definite for all t. This simplifies a dynamical characterization from [6] (restated as Lemma 4
in Subappendix G.2), yielding lucid differential equations governing the entries of the product matrix.
Careful analysis of these equations then completes the proof.

3.4 Robustness to perturbations
Our analysis (Subsection 3.2) has shown that when applying a deep matrix factorization (Section 2)
to the matrix completion problem defined in Subsection 3.1, if the product matrix (Equation (3)) has
positive determinant at initialization — a condition that holds with probability 0.5 under the wide
variety of random distributions specified by Proposition 3 — then the implicit regularization drives
all norms and quasi-norms towards infinity, while rank is essentially driven towards its minimum. A
natural question is how common this phenomenon is, and in particular, to what extent does it persist if
the observed entries we defined (Equation (6)) are perturbed. Theorem 2 in Appendix C generalizes
Theorem 1 (from Subsection 3.2) to the case of arbitrary non-zero values for the off-diagonal
observations b1,2, b2,1, and an arbitrary value for the diagonal observation b2,2. In this generalization,
the assumption (from Theorem 1) of the product matrix’s determinant at initialization being positive
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Figure 1: Implicit regularization in matrix factorization can drive all norms (and quasi-norms) towards infinity.
For the matrix completion problem defined in Subsection 3.1, our analysis (Subsection 3.2) implies that with
small learning rate and initialization close to the origin, when the product matrix (Equation (3)) is initialized to
have positive determinant, gradient descent on a matrix factorization leads absolute value of unobserved entry
to increase (which in turn means norms and quasi-norms increase) as loss decreases, i.e. as observations are
fit. This is demonstrated in the plots above, which for representative runs, show absolute value of unobserved
entry as a function of the loss (Equation 1), with iteration number encoded by color. Each plot corresponds
to a different depth for the matrix factorization, and presents runs with varying configurations of learning rate
and initialization (abbreviated as “lr” and “init”, respectively). Both balanced (Equation 5) and unbalanced
(layer-wise independent) random initializations were evaluated (former is marked by “(b)”). Independently for
each depth, runs were iteratively carried out, with both learning rate and standard deviation for initialization
decreased after each run, until the point where further reduction did not yield a noticeable change (presented
runs are those from the last iterations of this process). Notice that depth, balancedness, and small learning
rate and initialization, all contribute to the examined effect (absolute value of unobserved entry increasing as
loss decreases), with the transition from depth 2 to 3 or more being most significant. Notice also that all runs
initially follow the same curve, differing from one another in the point at which they divert (enter a phase where
examined effect is lesser). While a complete investigation of these phenomena is left for future work, we provide
a partial theoretical explanation in Appendix D. For further implementation details, and similar experiments
with different matrix dimensions, as well as perturbed and repositioned observations, see Appendix F.

is modified to an assumption of it having the same sign as b1,2 · b2,1 (the probability of which is
also 0.5 under the random distributions covered by Proposition 3). Conditioned on the modified
assumption, the smaller |b2,2| is compared to |b1,2 · b2,1|, the higher the implicit regularization is
guaranteed to drive norms and quasi-norms, and the lower it is guaranteed to essentially drive the
rank. Two immediate implications of Theorem 2 are: (i) if the diagonal observation is unperturbed
(b2,2 = 0), the off-diagonal ones (b1,2, b2,1) can take on any non-zero values, and the phenomenon
of implicit regularization driving norms and quasi-norms towards infinity (while essentially driving
rank towards its minimum) will persist; and (ii) this phenomenon gracefully recedes as the diagonal
observation is perturbed away from zero. We note that Theorem 2 applies even if the unobserved entry
is repositioned, thus our construction is robust not only to perturbations in observed values, but also
to an arbitrary change in the observed locations. See Subappendix F.1 for empirical demonstrations.

4 Experiments
This section presents our empirical evaluations. We begin in Subsection 4.1 with deep matrix factor-
ization (Section 2) applied to the settings we analyzed (Section 3). Then, we turn to Subsection 4.2
and experiment with an extension to tensor (multi-dimensional array) factorization. For brevity, many
details behind our implementation, as well as some experiments, are deferred to Appendix F.

4.1 Analyzed settings
In [34], Gunasekar et al. experimented with matrix factorization, arriving at Conjecture 1. In the
following work [8], Arora et al. empirically evaluated additional settings, ultimately arguing against
Conjecture 1, and raising Conjecture 2. Our analysis (Section 3) affirmed Conjecture 2, by providing a
setting in which gradient descent (with infinitesimally small learning rate and initialization arbitrarily
close to the origin) over (shallow or deep) matrix factorization provably drives all norms (and
quasi-norms) towards infinity. Specifically, we established that running gradient descent on the
overparameterized matrix completion objective in Equation (2), where the observed entries are those
defined in Equation (6), leads the unobserved entry to diverge to infinity as loss converges to zero.
Figure 1 demonstrates this phenomenon empirically. Figures 4 and 5 in Subappendix F.1 extend
the experiment by considering, respectively: different matrix dimensions (see Appendix E); and
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Figure 2: Gradient descent over tensor factorization exhibits an implicit regularization towards low (tensor) rank.
Plots above report results of tensor completion experiments, comparing: (i) minimization of loss (Equation (11))
via gradient descent over tensor factorization (Equation (12) with R large enough for expressing any tensor)
starting from (small) random initialization (method is abbreviated as “tf”); against (ii) trivial baseline that
matches observations while holding zeros in unobserved locations — equivalent to minimizing loss via gradient
descent over linear parameterization (i.e. directly overW) starting from zero initialization (hence this method
is referred to as “linear”). Each pair of plots corresponds to a randomly drawn low-rank ground truth tensor,
from which multiple sets of observations varying in size were randomly chosen. The ground truth tensors
corresponding to left and right pairs both have rank 1 (for results obtained with additional ground truth ranks see
Figure 6 in Subappendix F.1), with sizes 8-by-8-by-8 (order 3) and 8-by-8-by-8-by-8 (order 4) respectively. The
plots in each pair show reconstruction errors (Frobenius distance from ground truth) and ranks (numerically
estimated) of final solutions as a function of the number of observations in the task, with error bars spanning
interquartile range (25’th to 75’th percentiles) over multiple trials (differing in random seed for initialization),
and markers showing median. For gradient descent over tensor factorization, we employed an adaptive learning
rate scheme to reduce run times (see Subappendix F.2 for details), and iteratively ran with decreasing standard
deviation for initialization, until the point at which further reduction did not yield a noticeable change (presented
results are those from the last iterations of this process, with the corresponding standard deviations annotated by
“init”). Notice that gradient descent over tensor factorization indeed exhibits an implicit tendency towards low
rank (leading to accurate reconstruction of low-rank ground truth tensors), and that this tendency is stronger with
smaller initialization. For further details and experiments see Appendix F.

perturbations and repositionings applied to observations (cf. Subsection 3.4). The figures confirm that
the inability of norms (and quasi-norms) to explain implicit regularization in matrix factorization
translates from theory to practice.

4.2 From matrix to tensor factorization
At the heart of our analysis (Section 3) lies a matrix completion problem whose solution set (Equa-
tion (7)) entails a direct contradiction between minimizing norms (or quasi-norms) and minimizing
rank. We have shown that on this problem, gradient descent over (shallow or deep) matrix factoriza-
tion is willing to completely give up on the former in favor of the latter. This suggests that, rather than
viewing implicit regularization in matrix factorization through the lens of norms (or quasi-norms), a
potentially more useful interpretation is minimization of rank. Indeed, while global minimization of
rank is in the worst case computationally hard (cf. [73]), it has been shown in [8] (theoretically as
well as empirically) that the dynamics of gradient descent over matrix factorization promote sparsity
of singular values, and thus they may be interpreted as searching for low rank locally. As a step
towards assessing the generality of this interpretation, we empirically explore an extension of matrix
factorization to tensor factorization.

In the context of matrix completion, (depth 2) matrix factorization amounts to optimizing the loss
in Equation (1) by applying gradient descent to the parameterization W =

∑R
r=1 wr ⊗w′r, where

R ∈ N is a predetermined constant,⊗ stands for outer product,6 and {wr ∈ Rd}Rr=1, {w′r ∈ Rd′}Rr=1
are the optimized parameters. The minimal R required for this parameterization to be able to express
a given W̄ ∈ Rd,d′ is precisely the latter’s rank. Implicit regularization towards low rank means that
even when R is large enough for expressing any matrix (i.e. R ≥ min{d, d′}), solutions expressible
(or approximable) with small R tend to be learned.

A generalization of the above is obtained by switching from matrices (tensors of order 2) to tensors
of arbitrary order N ∈ N. This gives rise to a tensor completion problem, with corresponding loss:

` : Rd1,d2,...,dN → R≥0 , `(W) =
1

2

∑
(i1,i2,...,iN )∈Ω

(
(W)i1,i2,...,iN − bi1,i2,...,iN

)2
, (11)

6Given {v(n) ∈ Rdn}Nn=1, the outer product v(1) ⊗ v(2) ⊗ · · · ⊗ v(N) ∈ Rd1,d2,...,dN — an order N
tensor — is defined by (v(1) ⊗ v(2) ⊗ · · · ⊗ v(N))i1,i2,...,iN = (v(1))i1 · (v(2))i2 · · · (v(N))iN .
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Figure 3: Tensor factorizations correspond to convolutional arithmetic circuits (class of non-linear neural
networks studied extensively), analogously to how matrix factorizations correspond to linear neural networks.
Specifically, the tensor factorization in Equation (12) corresponds to the convolutional arithmetic circuit il-
lustrated above (illustration assumes d1 = d2 = · · · = dN = d to avoid clutter). The input to the network
is a tuple (i1, i2, . . . , iN ) ∈ {1, 2, . . . , d1} × {1, 2, . . . , d2} × · · · × {1, 2, . . . , dN}, represented via one-hot
vectors (x1,x2, . . . ,xN ) ∈ Rd1 ×Rd2 ×· · ·×RdN . These vectors are processed by a hidden layer comprising:
(i) locally connected linear operator with R channels, the r’th one computing inner products against filters
(w(1)

r ,w(2)
r , . . . ,w(N)

r ) ∈ Rd1 × Rd2 × · · · × RdN (this operator is referred to as “1×1 conv”, appealing
to the case of weight sharing, i.e. w(1)

r = w(2)
r = . . . = w(N)

r ); followed by (ii) global pooling computing
products of all activations in each channel. The result of the hidden layer is then reduced through summation to a
scalar — output of the network. Overall, given input tuple (i1, i2, . . . , iN ), the network outputs (W)i1,i2,...,iN ,
where W ∈ Rd1,d2,...,dN is given by the tensor factorization in Equation (12). Notice that the number of
terms (R) and the tunable parameters ({w(n)

r }r,n) in the factorization respectively correspond to the width and
the learnable filters of the network. Our tensor factorization (Equation (12)) was derived as an extension of a
shallow (depth 2) matrix factorization, and accordingly, the convolutional arithmetic circuit it corresponds to
is shallow (has a single hidden layer). Endowing the factorization with hierarchical structures would render
it equivalent to deep convolutional arithmetic circuits (see [22] for details) — investigation of the implicit
regularization in these models is viewed as a promising avenue for future research.

where {bi1,i2,...,iN ∈ R}(i1,i2,...,iN )∈Ω, Ω ⊂ {1, 2, . . . , d1} × {1, 2, . . . , d2} × · · · × {1, 2, . . . , dN},
stands for the set of observed entries. One may employ a tensor factorization by minimizing the loss
in Equation (11) via gradient descent over the parameterization:

W =
∑R

r=1
w(1)
r ⊗w(2)

r ⊗ · · · ⊗w(N)
r , w(n)

r ∈ Rdn , r = 1, 2, ... , R , n = 1, 2, ... , N , (12)

where again, R ∈ N is a predetermined constant, ⊗ stands for outer product, and {w(n)
r }Rr=1

N
n=1

are the optimized parameters. In analogy with the matrix case, the minimal R required for this
parameterization to be able to express a given W̄ ∈ Rd1,d2,...,dN is defined to be the latter’s (tensor)
rank. An implicit regularization towards low rank here would mean that even when R is large enough
for expressing any tensor, solutions expressible (or approximable) with small R tend to be learned.

Figure 2 displays results of tensor completion experiments, in which tensor factorization (optimization
of loss in Equation (11) via gradient descent over parameterization in Equation (12)) is applied to
observations (i.e. {bi1,i2,...,iN }(i1,i2,...,iN )∈Ω) drawn from a low-rank ground truth tensor. As can be
seen in terms of both reconstruction error (distance from ground truth tensor) and (tensor) rank of
the produced solutions, tensor factorizations indeed exhibit an implicit regularization towards low
rank. The phenomenon thus goes beyond the special case of matrix (order 2 tensor) factorization.
Theoretically supporting this finding is regarded as a promising direction for future research.

As discussed in Section 1, matrix completion can be seen as a prediction problem, and matrix
factorization as its solution with a linear neural network. In a similar vein, tensor completion may be
viewed as a prediction problem, and tensor factorization as its solution with a convolutional arithmetic
circuit — see Figure 3. Convolutional arithmetic circuits form a class of non-linear neural networks
that has been studied extensively in theory (cf. [22, 19, 20, 23, 77, 54, 24, 9, 55]), and has also
demonstrated promising results in practice (see [18, 21, 78]). Analogously to how the input-output
mapping of a linear neural network is naturally represented by a matrix, that of a convolutional
arithmetic circuit admits a natural representation as a tensor. Our experiments (Figure 2 and Figure 6
in Subappendix F.1) show that (at least in some settings) when learned via gradient descent, this
tensor tends to have low rank. We thus obtain a second exemplar of a neural network architecture
whose implicit regularization strives to lower a notion of rank for its input-output mapping. This leads
us to believe that the phenomenon may be general, and formalizing notions of rank for input-output
mappings of contemporary models may be key to explaining generalization in deep learning.
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Broader Impact
The application of deep learning in practice is based primarily on trial and error, conventional wisdom
and intuition, often leading to suboptimal performance, as well as compromise in important aspects
such as safety, privacy and fairness. Developing rigorous theoretical foundations behind deep learning
may facilitate a more principled use of the technology, alleviating aforementioned shortcomings. The
current paper takes a step along this vein, by addressing the central question of implicit regularization
induced by gradient-based optimization. While theoretical advances — particularly those concerned
with explaining widely observed empirical phenomena — oftentimes do not pose apparent societal
threats, a potential risk they introduce is misinterpretation by scientific readership. We have therefore
made utmost efforts to present our results as transparently as possible.
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