Fair Multiple Decision Making Through Soft Interventions

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu

Abstract

Previous research in fair classification mostly focuses on a single decision model. In reality, there usually exist multiple decision models within a system and all of which may contain a certain amount of discrimination. Such realistic scenarios introduce new challenges to fair classification: since discrimination may be transmitted from upstream models to downstream models, building decision models separately without taking upstream models into consideration cannot guarantee to achieve fairness. In this paper, we propose an approach that learns multiple classifiers and achieves fairness for all of them simultaneously, by treating each decision model as a soft intervention and inferring the post-intervention distributions to formulate the loss function as well as the fairness constraints. We adopt surrogate functions to smooth the loss function and constraints, and theoretically show that the excess risk of the proposed loss function can be bounded in a form that is the same as that for traditional surrogated loss functions. Experiments using both synthetic and real-world datasets show the effectiveness of our approach.