A Randomized Algorithm to Reduce the Support of Discrete Measures

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Francesco Cosentino, Harald Oberhauser, Alessandro Abate

Abstract

Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms and has the same mean when integrated against each of the $n$ functions. If $ N \gg n$ this results in a huge reduction of complexity. We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by ``greedy geometric sampling''. We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $N\gg n$ regime. A Python implementation is available at \url{https://github.com/FraCose/Recombination_Random_Algos}.