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Abstract

Given a discrete probability measure supported on N atoms and a set of n
real-valued functions, there exists a probability measure that is supported on
a subset of n + 1 of the original N atoms and has the same mean when inte-
grated against each of the n functions. If N � n this results in a huge reduc-
tion of complexity. We give a simple geometric characterization of barycen-
ters via negative cones and derive a randomized algorithm that computes this
new measure by “greedy geometric sampling”. We then study its properties,
and benchmark it on synthetic and real-world data to show that it can be very
beneficial in the N � n regime. A Python implementation is available at
https://github.com/FraCose/Recombination_Random_Algos.

1 Introduction

Discrete probability measures are central to many inference tasks, for example as empirical measures.
In the “big data” regime, where the number N of samples is huge, this often requires to construct a
reduced summary of the original measure. Often this summary is constructed by sampling n points at
random out of the N points, but Tchakaloff’s theorem suggests that there is another way.
Theorem 1 (Tchakaloff [1]). Let µ be a discrete probability measure that is supported on N points
in a space X . Let { f1, . . . , fn} be a set of n real-valued functions fi : X → R, n < N. There exists a
discrete probability measure µ̂ such that supp(µ̂)⊂ supp(µ), |supp(µ̂)| ≤ n+1, and

EX∼µ [ fi(X)] = EX∼µ̂ [ fi(X)] for all i ∈ {1, . . . ,n}. (1)

We introduce a randomized algorithm that computes µ̂ efficiently in the n� N regime.

Related work. Reducing the support of a (not necessarily discrete) measure subject to matching
the mean on a set of functions is a classical problem, which goes back at least to Gauss’ famous
quadrature formula that matches the mean of monomials up to a given degree when µ is the Lebesgue
measure on R. In multi-dimensions this is known as cubature and Tchakaloff [1] showed the existence
of a reduced measure for compactly supported, not necessarily discrete, measures, see [2]. When
µ is discrete, the problem of computing µ̂ also runs under the name recombination. Algorithms to
compute µ̂ for discrete measures µ go back at least to [3] and have been an intensive research topics
ever since; we refer to [4] for an overview of the different approaches, and [4, 5, 6] for recent, state of
the art algorithms and applications. Using randomness for Tchakaloff’s Theorem has been suggested
before [7, 8] but the focus there is to show that the barycenter lies in the convex hull when enough
points from a continuous measure are sampled so that subsequently any of the algorithms [4, 5, 6] can
be applied; in contrast, our randomness stems from the reduction algorithm itself. More generally,
the topic of replacing a large data set by a small, carefully weighted subset is a vast field that has
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attracted many different communities and we mention, pars pro toto, computational geometry [9],
coresets in computer science [10], scalable Bayesian statistics [11], clustering and optimisation [12].
In follow up work [13], our randomized algorithm was already used to derive a novel approach to
stochastic gradient descent.

Contribution. The above mentioned algorithms [4, 5, 6] use a divide and conquer approach that
splits up points into groups, computes a barycenter for each group, and solves a constrained linear
system several times. This leads to a deterministic complexity that is determined by N and n. In
contrast, our approach uses the geometry of cones to “greedy” sample for candidates in the support
of µ that are atoms for µ̂ and tries to construct the reduced measure in one go. Further, it can be
optimized with classical black box reset strategies to reduce the variance of the run time. Our results
show that this can be very efficient in the big data regime N� n that is common in machine learning
applications, such as least least square solvers when the number of samples N is very large. Moreover,
our approach is complementary to previous work since it can be combined with it: by limiting the
iterations for our randomized algorithm and subsequently running any of the deterministic algorithms
above if a solution by “greedy geometric sampling” was not found, one gets a hybrid algorithm that
is of the same order as the deterministic one but that has a good chance of being faster; we give full
details in Appendix E but focus in main text on the properties of the randomized algorithm.

Outline. We introduce the basic ideas in Section 2, where we derive a simple version of the greedy
sampling algorithm, and study its theoretical properties. In Section 3 we optimize the algorithm
to better use the cone geometry, combine with reset strategies to reduce the running time variance,
and use the Woodbury formula to obtain a robustness result. In Section 4 we discuss numerical
experiments that study the properties of the algorithms on two problems: (i) reducing the support
of empirical measures; and (ii) least square solvers for large samples. In the Appendix we provide
detailed proofs and more background on discrete geometry.

2 Negative cones and a naive algorithm

Background. As is well-known, Theorem 1 follows from Caratheodory’s convex hull theorem
Theorem 2 (Caratheodory). Given a set of N points in Rn and a point x that lies in the convex hull
of these N points. Then x is a linear combination of at most n+1 points from the N points.

It is instructive to recall how Theorem 2 implies Theorem 1. Therefore define a Rn-valued random
variable F : Ω = X →Rn as F(ω) := ( f1(ω), . . . , fn(ω)) and note that Equation (1) is equivalent to∫

Ω

F(ω)µ(dω) =
∫

Ω

F(ω)µ̂(dω).

Since µ has finite support, the left-hand side can be written as a sum ∑ω∈supp(µ) F(ω)µ(ω). This
sum gives a point in the convex hull of the set of N (or less) points x := {F(ω) : ω ∈ supp(µ)} in
Rn. But by Caratheodory’s theorem, this point must be a convex combination of a subset x̂ of only
n+1 (or less) points of x and Theorem 1 follows. This proof of Theorem 1 is also constructive in the
sense that it shows that computing µ̂ reduces to constructing the linear combination guaranteed by
Caratheodory’s theorem; e.g. by solving N times a constrained linear system, see [3].

Barycenters and cones. Key to Tchakaloff’s theorem is to verify if two measures have the same
mean. We now give a simple geometric characterization in terms of negative cones, Theorem 3.
Definition 1. Let x ⊂ Rn be a finite set of points in Rn. We call the set C(x) := {c ∈ Rn |c =
∑x∈x λxx, where λx ≥ 0} the cone generated by x and we also refer to x as its basis. We call the set
C−(x) := {c |c = ∑x∈x λxx, where λx ≤ 0} the negative cone generated by x.

For example, C(x1,x2) is the “infinite” triangle created by the half-lines 0x1, 0x2 with origin in 0;
C({x1,x2,x3}), is the infinite pyramid formed by the edges 0x1, 0x2, 0x3, with vertex 0; see Figure 1.
Theorem 3. Let x = {x1, . . . ,xn+1} be a set of n+1 points in Rn such that x\{xn+1} spans Rn. Let
A be the matrix that transforms x \ {xn+1} = {x1, . . . ,xn} to the orthonormal basis {e1, . . . ,en} of
Rn, i.e. Axi = ei. Further, let hi be the unit vector such that 〈hi,x〉= 0 for all x ∈ x\{xi,xn+1} and
〈hi,xi〉< 0 and denote with Hx\{xn+1} a n×n matrix that has h1, . . . ,hn as row vectors. It holds that
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Figure 1: Cones and Negative Cones spanned by two (left) and three points (right).

1. C(x\{xn+1}) = {c|Hx\{xn+1}c≤ 0} and C−(x\{xn+1}) = {c|Hx\{xn+1}c≥ 0}.

2. Ax≥ 0 if and only if Hx\{xn+1}x≤ 0 and Ax≤ 0 if and only if Hx\{xn+1}x≥ 0.

3. There exists a convex combination of x with 0 as barycentre, ∑
n+1
i=1 wixi = 0 for some wi >

0, and ∑
n+1
i=1 wi = 1 if and only if xn+1 ∈C−(x\{xn+1}).

The above result could be formulated without the matrix A, only in terms of Hx\{xn+1}. However, A is
the inverse of the matrix with columns equal to the vectors {x\{xn+1}}, hence computing A is more
efficient than computing Hx\{xn+1}, since matrix inversion is optimized in standard libraries.

A Naïve Algorithm. Theorem 3 implies a simple randomized algorithm: sample n points at random
until the negative cone spanned by the n points is not empty. Then item 3 of Theorem 3 implies that
the n points in the cone and any point in the negative cone form the support a reduced measure. If
Eµ [X ] 6= 0 we can always study the points x−Eµ [X ], this is equivalent in the proof of Theorem 3 to
work with cones whose vertex is not 0.

Algorithm 1 Basic measure reduction algorithm

1: procedure REDUCE(A set x of N points in Rn)
2: Choose n points x? from x
3: while C−(x?)∩x = /0 do
4: Replace x? with n new random points x? from x
5: end while
6: x?← x?∪ x? with an arbitrary x? ∈C−(x?)∩x
7: Solve the linear system ∑x∈x? w?

xx = 0 for w? = (w?
x)x∈x?

8: return (x?,w?)
9: end procedure

Corollary 1. Algorithm 1 computes a reduced measure µ̂ as required by Theorem 1 in τ ·O(n3+Nn2)
computational steps. Here τ = inf{i≥ 1 : C−(Xi)∩x 6= /0}, where X1,X2, . . . are random sets of n
points sampled uniformly at random from x.

The complexity of Algorithm 1 in a single loop iteration is dominated by (i) computing the matrix A
that defines the cones C−(x?) and C(x?), (ii) checking if there are points inside the cones, (iii) solving
a linear system to compute the weights w?

i . Respectively, the worst case complexities are O(n3),
O(Nn2) and O(n3), since to check if there are points inside the cones we have to multiply A and X,
where X is the matrix whose rows are the vector in x.
Proposition 1. Let N > n+1 and µ be a discrete probability with finite support and f1, . . . , fn be as
in Theorem 1. Moreover wlog assume EX∼µ [ fi(X)] = 0 for i = 1, . . . ,n. With p := n·n!(N−n)!

N! it holds
that E[τ]≤ 1

p and Var(τ)≤ 1−p
p2 and, for fixed n, limN→∞E[τ] = 1.

Not surprisingly, the worst case bound for E[τ] are not practical, and it is easy to come up with
examples where this τ will be very large with high probability, e.g. a cluster of points and one
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point far apart from this cluster would result in wasteful oversampling of points from the cluster.
Such examples, suggest that one should be able to do better by taking the geometry of points into
account which we will do in Section 3. However, before that, it is instructive to better understand the
properties of Algorithm 1 when applied to empirical measures.

Application to empirical measures. Consider a random probability measure µ =
1
N ∑

N
i=1 δ( f1(Xi),..., fn(Xi)) where the X1,X2, . . . are independent and identically distributed.

Proposition 2. Let N > n+ 1 and let f1, . . . , fn be n real-valued functions and X1, . . . ,XN be N
i.i.d. copies of a random variable X. Set F(X) = ( f1(X), . . . , fn(X)), assume E[F(X)] = 0 and denote

E := {0 ∈ Conv{F(Xi), i ∈ {1, . . . ,N}}}. (2)

1. E[τ|E]≤ 1
p and Var(τ|E)≤ 1−p

p2 , where

p = max
{

n ·n!(N−n)!
N!

,1−P(0 6∈ Conv{F(X1), . . . ,F(Xn+1)})N−n
}
, (3)

2. If the law of F(X) is invariant under reflection in the origin, then
P(0 6∈ Conv{F(X1), . . . ,F(Xn+1)}) = 1−2−n,

3. For fixed n, as N→ ∞

P(for n uniformly at random chosen points x? from x, ∃x ∈ x s.t. x ∈C−(x?))→ 1,

where x = {F(X1),F(X2), . . . ,F(XN)}.

Proposition 2 conditions on the event (2) so that the recombination problem is well-posed, but
this happens with probability one for large enough N, see Theorem 5 in Appendix and [8]. Not
surprisingly, the worst case bounds of Algorithm 1 can be inconvenient, as equation (3) shows.
Nevertheless, item 2 of Proposition 2 shows an interesting trade-off in computational complexity,
since the total cost

E[τ]O(n3 +Nn2)≤C(n3 +Nn2)min

{
N!

n ·n!(N−n)!
,

1

1− (1−2−n)N−n

}
(4)

has a local minimum in N, see Figure 7 in the Appendix. Section 4 shows that this is observed in
experiments and this minimum also motivates the divide and conquer strategy we use in the next
section.

3 A geometrically greedy Algorithm

Algorithm 1 produces candidates for the reduced measure by random sampling and then accepts or
rejects them via the characterization given in Theorem 3. We now optimize the first part of it, namely
the selection of candidates, by exploiting better the geometry of cones.

Motivation in two dimensions. Having chosen x? points we know that we have found a solution if
C−(x?)∩x 6= /0. Hence, maximizing the volume of the cone increases the chance that this intersection
is not empty. Indeed, when n = 2 it is easy to show the following result.

Theorem 4. Let x be a set of N≥ 3 points in R2 and x1 ∈ x. Define x? = (x?1,x
?
2), where

x?2 := argmaxx∈x\{x?1}

∣∣∣∣ 〈x?1,x〉‖x?1‖‖x‖
−1
∣∣∣∣ . (5)

There exists a convex combination ∑x∈x wxx of x that equals 0 if and only if x∩C−(x?) 6= /0.

Theorem 4 follows immediately from the cone geometry but it is instructive to spell it out since it
motivates the case of general n.
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Figure 2: Proof of Theorem 4.

Proof. The shaded areas in Figure 2 indicate C−(x1,x?) (on the top) and C(x1,x?) (on the bottom).
Moreover, by definition of x? in the region A and A′ there are no points.

(⇒) If there exists a point x2 in C−(x1,x?), then by convexity it follows that there exists a convex
combination of 0 for x1,x2,x?.
(⇐) If there does not exist a point in C−(x1,x?), then there are points only in B∪C(x1,x?), therefore,
again for simple convex geometry arguments, it is impossible that there exists a convex combination
of 0 for x1,x2,x?.

Hence, if we modify Algorithm 1 by selecting in step 4 the new point by maximizing the angle
according to (5) then for n = 2, Theorem 4 guarantees that n+1 = 3 points out of N are found that
constitute a reduced measure µ̂ in τ ≤ 2 computational steps.

A geometrically greedy Algorithm. For general dimensions n, the intuition remains that a good
(but not perfect) proxy to maximize the likelihood that the negative cone is non-empty, is given
by maximizing the volume of the cone, see [14, Chapter 8]. Such a volume maximization is a
long-standing open question and goes at least back to [15]; see [16] for an overview. One reviewer,
also pointed to recent papers that implicitly apply a similar intuition to other problems, see [17, 18].
All this motivates the “geometrically greedy” Algorithm 2 that applies for any n. First note that the

Algorithm 2 Optimized measure reduction algorithm

1: procedure REDUCE-OPTIMIZED(A set x of N points in Rn)
2: Choose n points x? = {x?1, . . . ,x?n} from x
3: i← 0
4: while C−(x?)∩x = /0 do
5: x← x\ interior{C(x?)}
6: if i = 0 then
7: x?i+1← argmaxx∈x\x?

∣∣〈x,∑n
j=2 x?j〉−1

∣∣
8: else
9: x?i+1← argmaxx∈x\x?

∣∣〈x,∑i
j=1 x?j〉−1

∣∣
10: end if
11: i← ((i+1) mod n)
12: end while
13: x?← x?∪ x? with an arbitrary x? ∈C−(x?)∩x
14: Solve the linear system ∑x∈x? w?

xx = 0 for w? = (w?
x)x∈x?

15: return (x?,w?)
16: end procedure

deletion of points in step 5 in Algorithm 2 does not throw away potential solutions: suppose we
have deleted a point x̂ in the previous step that was part of a solution, i.e. there exists a set of n+1
points x̂? in x such that x̂ ∈ x̂?, and there exist n+1 weights ŵi, i ∈ [0, . . . ,n+1], ŵi ∈ [0,1], ∑wi = 1
such that ∑

n+1
i=1 ŵix̂∗i = 0, x̂∗i ∈ x̂?. If we indicate with xc the n vectors of the basis of the cone of the

previous iteration, we know that x̂ ∈ interior{C(xc)}, which means there exist strictly positive values
ci such that x̂ = ∑

n
i=1 cixc

i , xc
i ∈ xc. Therefore,

n+1

∑
i=1

ŵix̂∗i =ŵn+1x̂+
n

∑
i=1

ŵix̂∗i = ŵn+1

n

∑
i=1

cixc
i +

n

∑
i=1

ŵix̂∗i , xc
i ∈ xc and x̂∗i ∈ x̂?.
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Given that wi and ci are positive 0 ∈ Conv{x̂? ∪ xc} and we can apply again the Caratheodory’s
Theorem 2, which implies that the deleted point x̂ was not essential. The reason for the if clause
in step 6 is simply that the first time the loop is entered we optimize using the randomly selected
bases, but in subsequent runs it is intuitive that we should only optimize over the base points that
were optimized in previous loops.

Complexity. We now discuss the complexity of Algorithm 2.
Proposition 3. The complexity of Algorithm 2 to compute a reduced measure µ̂ ,as in Theorem 1, is

O(n3 +n2N)+(τ−1)O(n2 +nN),

here τ = inf{i≥ 1 : C−(Xi)∩x 6= /0} where X1,X2, . . . are obtained as in Algorithm 2.

In contrast, to the complexity of Algorithm 1, Corollary 1, the n3 term that results from a matrix
inversion is no longer proportional to τ , and the random runtime τ only affects the complexity
proportional to n2+nN. For a generalization of Theorem 4 from n = 2 to general n, that is a statement
of the form “in n dimensions the algorithm terminates after at most τ ≤ f (n)”, one ultimately runs
into the result of a “positive basis” from discrete geometry, see for example [19], that says if n≥ 3 it is
possible to build positive independent set of vectors of any cardinality. Characterizing the probability
of the occurrences of such sets is an ongoing discrete geometry research topic and we have nothing
new to contribute to this. However, despite the existence of such “positive independent sets” for
n ≥ 3, the experiments in Section 4 underlines the intuition that in the generic case, maximizing
the angles is hugely beneficial also in higher dimension. If a deterministic bound on the runtime
is crucial, one can combine the strengths of Algorithm 2 (a good chance of finding x? quickly by
repeatedly smart guessing) with the strength of deterministic algorithms such as [4, 5, 6] by running
Algorithm 2 for at most k steps and if a solution is not found run a deterministic algorithms. Indeed,
our experiments show that this is on average a very good trade-off since most of the probability mass
of τ is concentrated at small k, see also Appendix E.

Robustness. An interesting question is how robust the measure reduction procedure is to the initial
points. Therefore assume we know the solution of the recombination problem (RP) for x⊂ Rn, i.e. a
subset of n+1 points x̂ = (x̂1, x̂2, . . . , x̂n+1)⊂ x and a discrete measure µ̂ on x̂ such that µ̂(x̂) = 0. If
a set of points y is close to x one would expect that one can use the solution of the RP for x to solve
the RP for y. The theorem below uses the Woodbury matrix identity to make this precise.
Proposition 4. Assume that span(x̂) = span(x̂−1) =Rn, where x̂−i := x̂\ x̂i. Denote with X a matrix
which as has rows the vectors in x. Suppose there exists an invertible matrix R and another matrix E,
such that X = YR+E. Denote γ1 := (X̂>−1)

−1X̂>1 , where x̂ is a solution to the RP x. Assuming that
the inverse matrices exist, X̂R+Ex̂ is a solution to the RP y if and only if

γ
>
1 +Ex̂1R−1A>1 ≤

(
γ
>
1 +Ex̂1R−1A>1

)
Ex̂−1

(
I +R−1A>1 Ex̂−1

)
R−1AT

1

where Ey indicates the part of the matrix E related to the set of vectors y⊂ x and A1 = (X̂>−1)
−1.

This is not only of theoretical interest, since the initial choice of a cone basis in Algorithm 2 can be
decisive. For example, if we repeatedly solve a “similar” RP, e.g. N points are sampled from the same
distribution, then Proposition 4 suggests that after the first RP solution, we should use the points in
the new set of points that are closest to the previous solution as initial choice of the cone basis.

Las Vegas resets. The only source of randomness in Algorithm 2 is the choice of x? in step 2. If this
happens to be a bad choice, much computational time is wasted, or even worse, the Algorithm might
not even terminate. However, like any other random “black box” algorithm one can stop Algorithm 2
if τ becomes large and then restart with a random basis x? sampled independently from the previous
one. We call a sequence S = (t1, t2, . . .) of integers a reset strategy where the ith entry ti denotes the
number of iterations we allow after the ith time the algorithm was restarted, e.g. S = (10,3,6, . . .)
means that if a solution is not found after 10 loops, we stop and restart; then wait for at most 3 loop
iterations before restarting; then 6, etc. Surprisingly, the question which strategy S minimises the
expected run time of Algorithm 2 has an explicit answer. A direct consquence of the main result
in [20] is that S ? = c× (1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1 . . .) achieves the best expected running
time up to a logarithmic factor, i.e. by following S ? the expected running time is O(E[τ?] logE[τ?])
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where τ? denotes the minimal expected run time under any reset strategy. Thus, although in general
we do not know the optimal reset strategy τ? (which will be highly dependent on the points x), we
can still follow S ? which guarantees that Algorithm 2 terminates and that its expected running time
is within a logarithmic factor of the best reset strategy. Since Algorithm 2 uses n updates of a cone
basis, it is natural to take c proportional to n (in our experiments we fixed throughout c = 2n).

Divide and conquer. A strategy used in existing algorithms [4, 5, 6] is for a given µ = ∑
N
i=1 wixi

to partition the N points into 2(n+1) groups I1, . . . , I2(n+1) of approximately equal size, compute the
barycenter bi for each group Ii, and then carry out any measure reduction algorithm to reduce the
support of ∑

2(n+1)
i=1

wi
∑ j∈Ii w j

δbi to n+1 points. One can then repeat this procedure, see [4, Algorithm

2 on p1306] for details, and since each iteration halves the support, this terminates after log(N/n)
iterations. Hence the total cost is O(Nn+ log(N/n))C(2(n+ 1),n+ 1)), where C(2(n+ 1),n+ 1)
denotes the cost to reduce the measure from 2(n+ 1) points to n+ 1 points. For the algorithm in
[4] C(2(n+1),n+1) = O(n4), similarly to [6]; for the algorithm in [5] C(2(n+1),n+1) = O(n3).
Similarly, we can also run our randomized Algorithm 2 on the 2(n+1) points. However, the situation
is more subtle since the regime where Algorithm 2 excels is the big data regime N� n, so running the
algorithm on smaller groups of points could reduce the effectiveness. Already for simple distributions
and Algorithm 1, as in Proposition 2 item 2, we see that for the optimal choice we should divide
the points in N∗n groups with N∗n denoting the argmin of the complexity in N. This decreases the
computational cost to O(Nn+ logN∗n /n(N)C̄(N∗n ,n+1)), where C̄ denotes the computational cost of
Algorithm 1 to reduce from N∗n points to (n+1) points. In general, the optimal N∗n will depend on
the distribution of the points, but an informal calculation shows that N∗n = 50(n+1) achieves the best
trade-off; see Appendix D for details.

4 Experiments

We give two sets of experiments to demonstrate the properties of Algorithm 1 and Algorithm 2:
(i) using synthetic data allows to study the behaviour in various regimes of N and n, (ii) on real-world
data, following [6], for fast least square solvers. As baselines we consider two recent algorithms [5]
(det3) and [4] resp. [6] (det4)1.

Reducing empirical measures. We sampled N ∈ {2n,20,30,50, . . . ,106} points (i) a
n = 15-dimensional standard normal random variable (symmetric1), (ii) a n = 20-dimensional stan-
dard normal random variable (symmetric2), (iii) n = 20 dimensional mixture of exponential (non
symmetric). We then ran Algorithm 1 (basic), Algorithm 2 (optimized), as well as Algorithm 2
with the optimal Las Vegas reset (optimized-reset) and the divide and conquer strategy (log-opt);
the results are shown in Figure 3. The first row clearly shows that the performance gets best in the
big data regime N � n. The biggest effect is how the angle/volume optimization of Algorithm 2
drastically reduces the number of iterations compared to Algorithm 1, and therefore the running time
and the variance. From a theoretical perspective is interesting that the shape predicted in Proposition
2, for symmetric distributions such as the normal distribution (the two columns on the left) also
manifests itself for the non-symmetric mixture (the right column); see also Figure 7 in the Appendix.
The Las Vegas reset strategy is only noticeable in the regime when simultaneously N and n are
close and relatively large; e.g. Figure 3 falls not in this regime which is the reason why the plots
are indistinguishable. Nevertheless, even in regimes such as in Figure 3 the reset strategy is at
least on a theoretical level useful since it guarantees the convergence of Algorithm 2 by excluding
pathological cases of cycling through a “sequence” of cone bases (although we have not witnessed
such pathological cases in our experiments).

As expected, the regime when the number of points N is much higher than the number of dimensions
n, yields the best performance for the randomized algorithm; moreover, Figure 4 shows that the run
time is approximately O(n) (in contrast to the runtime of det4 and det3 that is O(n4) resp. O(n3)).

1Although the derivation is different, the resulting algorithms in [4, 6] are essentially identical; we use the
implementation of [6] since do the same least mean square experiment as in [6]. All experiments have been run
on a MacBook Pro, CPU: i7-7920HQ, RAM: 16 GB, 2133 MHz LPDDR3.
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Figure 3: Running time and number of iterations of the randomized algorithms as N varies. The first
two columns show the results for symmetric1 and symmetric2 , the right column for non-symmetric.
The shaded area represents the standard deviation (from 70 repetitions of the experiment).
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Figure 4: The top row compares the running time of randomized Algorithms against deterministic
algorithms as N varies for symmetric1 (left), symmetric2 (middle) and non-symmetric (right). The
shaded area represents the standard deviation (from 70 repetitions of the experiment). The bottom
row running time of the log-optimized algorithm as n varies for different N (average of 70 samples).

Fast mean-square solvers. In [6] a measure reduction was used to accelerate the least squares
method, i.e. the solution of the minimization problem minw ‖Xw−Y‖2 where X∈RN×d and Y∈RN ;
as in Proposition 4, X denotes a matrix which has as row vectors the elements of x, similarly for Y.
Sometimes precise solutions are required and in this case, the measure reduction approach yields
a scalable method: Theorem 2 guarantees the existence of a subset of n+1 = (d +1)(d +2)/2+1
points (x?,y?) of x and y such that (X|Y)> · (X|Y) = (X?|Y?)> · (X?|Y?) where we denote with
(X|Y) the element of RN×(d+1) formed by adding Y as a column. However, this implies that
‖Xw−Y‖2 = ‖X?w−Y?‖2 for every w, hence it is sufficient to solve the least square problem in
much lower dimensions once X? and Y? have been found. We use the following datasets from
[6](i) 3D Road Network [21] that contains 434874 records and use the two attributes longitude and
latitude to predict height, (ii) Household power consumption [22] that contains 2075259 records
and use the two 2 attributes active and reactive power to predict voltage. We also add a synthetic
dataset, (iii) where X ∈ RN×n, θ ∈ Rn and ε ∈ RN are normal random variables, and Y = Xθ + ε

which allows to study various regimes of N and n. Figure 5 shows the performance of Algorithm 2
with the Las Vegas reset, with the Las Vegas reset and the divide and conquer optimization on the
datasets (i),(ii). We observe that already Algorithm 2 with Las Vegas resets is on average faster but
the running time distribution has outliers where the algorithm takes longer than for the deterministic
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run time algorithms; combined with divide and conquer the variance is reduced by a lot. Figure 6
shows the results on the synthetic dataset (iii) for various values of N and n = (d +1)(d +2)/2.
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Figure 5: Histogram of the running time of Algorithm 2 with a reset strategy and of the “divide and
conquer” variation algorithm (log-random). The vast majority of probability mass of the random
runtime is below any of runtimes of the deterministic algorithms although with small probability it
can take longer than the deterministic runtimes.
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Figure 6: Performance of the different algorithms on the synthetic data set (iii) for various values of
N and n = (d +1)(d +2)/2.

Breaking the randomized Algorithm. As the above experiments show, Algorithm 2 can lead to
big speed ups. However, it is not uniformly better than the deterministic algorithms, and there are
situations where one should not use it: firstly, Algorithm 2 was optimized to work well in the N� n
regime and while this is an important regime for data science, the recombination problem itself is
of interest also in other regimes [4]. Secondly, the Las Vegas resets give a finite running time, but
it is easy to construct examples where this can be much worse than the deterministic algorithms.
Arguably the most practically relevant issue is when the independence hypothesis of Theorem 3 is not
satisfied. This can appear in data sets with a high number of highly correlated categorical features,
such as [23]. This can be overcome by using the Weyl Theorem, see Remark 1 in Appendix A but
the computational cost is higher than computing the inverse of the cone basis (A in Theorem 3) and
the benefits would be marginal, if not annulled, compared to the deterministic algorithms. More
relevant is that Algorithm 2 can be easily combined with any of the deterministic algorithms to build
an algorithm that has a worst case run time of the same order as a deterministic one but has a good
chance of being faster; see Appendix E for details and experiments.

5 Summary

We introduced a randomized algorithm that reduces the support of a discrete measure supported on
N atoms down to n+1 atoms while preserving the statistics as captured with n functions. The key
was a characterization of the barycenter in terms of negative cones, that inspired a greedy sampling.
Motivated by the geometry of cones this greedy sampling can be optimized, and finally combined
with optimization methods for randomized algorithms. This yields a “greedy geometric sampling”
that follows a very different strategy than the previous deterministic algorithms, and that performs
very well in the big data regime when N� n as is often the case for large sample sizes common in
inference tasks such as least square solvers.
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Broader Impact

The authors do not think this section is applicable to the present work, this work does not present any
foreseeable societal consequence.
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