Reducing Adversarially Robust Learning to Non-Robust PAC Learning

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback »Bibtex »MetaReview »Paper »Review »Supplemental »

Authors

Omar Montasser, Steve Hanneke, Nati Srebro

Abstract

<p>We study the problem of reducing adversarially robust learning to standard PAC learning, i.e. the complexity of learning adversarially robust predictors using access to only a black-box non-robust learner. We give a reduction that can robustly learn any hypothesis class C using any non-robust learner A for C. The number of calls to A depends logarithmically on the number of allowed adversarial perturbations per example, and we give a lower bound showing this is unavoidable.</p>