A Appendix

Proof of Lemma 3.2. Consider a dual space $\overline{\mathcal{G}}$: a set of functions $\overline{g}_x : \operatorname{co}^k(\mathcal{H}) \to \mathcal{Y}$ defined as $\overline{g}_x(f) = f(x)$ for each $f = \operatorname{MAJ}(h_1, \ldots, h_k) \in \operatorname{co}^k(\mathcal{H})$ and each $x \in \mathcal{X}$. It follows by definition of dual VC dimension that $\operatorname{vc}(\overline{\mathcal{G}}) = \operatorname{vc}^*(\operatorname{co}^k(\mathcal{H}))$. Similarly, define another dual space \mathcal{G} : a set of functions $g : \mathcal{H} \to \mathcal{Y}$ defined as g(x) = h(x) for each $h \in \mathcal{H}$ and each $x \in \mathcal{X}$. We know that $\operatorname{vc}(\mathcal{G}) = \operatorname{vc}^*(\mathcal{H}) = d^*$. Observe that by definition of \mathcal{G} and $\overline{\mathcal{G}}$, we have that for each $x \in \mathcal{X}$ and each $f = \operatorname{MAJ}(h_1, \ldots, h_k) \in \operatorname{co}^k(\mathcal{H})$,

$$\bar{g}_x(f) = f(x) = \operatorname{MAJ}(h_1, \dots, h_k)(x) = \operatorname{sign}\left(\sum_{i=1}^k h_i(x)\right) = \operatorname{sign}\left(\sum_{i=1}^k g_x(h_i)\right).$$

By the Sauer-Shelah Lemma applied to dual class \mathcal{G} , for any set $H = \{h_1, \ldots, h_n\} \subseteq \mathcal{H}$, the number of possible behaviors

$$|\mathcal{G}|_H| := |\{(g_x(h_1), \dots, g_x(h_n)) : x \in \mathcal{X}\}| \le \binom{n}{\le d^*}.$$
(3)

Consider a set $F = \{f_1, \ldots, f_m\} \subseteq co^k(\mathcal{H})$, the number of possible behaviors can be upperbounded as follows:

$$\begin{split} \bar{\mathcal{G}}|_{F} &|=|\{(\bar{g}_{x}(f_{1}),\ldots,\bar{g}_{x}(f_{m})):x\in\mathcal{X}\}|\\ &=|\{(\bar{g}_{x}(\mathrm{MAJ}(h_{1}^{1},\ldots,h_{1}^{k})),\ldots,\bar{g}_{x}(\mathrm{MAJ}(h_{m}^{1},\ldots,h_{m}^{k}))):x\in\mathcal{X}\}|\\ &=|\{\left(\mathrm{sign}\left(\sum_{i=1}^{k}g_{x}(h_{i})\right),\ldots,\mathrm{sign}\left(\sum_{i=1}^{k}g_{x}(h_{i})\right)\right):x\in\mathcal{X}\}|\\ &\stackrel{(i)}{\leq}|\{(g_{x}(h_{1}^{1}),\ldots,g_{x}(h_{1}^{k}),g_{x}(h_{2}^{1}),\ldots,g_{x}(h_{2}^{k}),\ldots,g_{x}(h_{m}^{1}),\ldots,g_{x}(h_{m}^{k})):x\in\mathcal{X}\}|\\ &\stackrel{(ii)}{\leq}\binom{mk}{\leq d^{*}}, \end{split}$$

where (i) follows from observing that each expanded vector $(g_x(h_i^1), \ldots, g_x(h_i^k))_{i=1}^m \in \mathcal{Y}^{mk}$ can map to at most one vector $\left(\operatorname{sign} \left(\sum_{i=1}^k g_x(h_i) \right), \ldots, \operatorname{sign} \left(\sum_{i=1}^k g_x(h_i) \right) \right) \in \mathcal{Y}^m$, and (ii) follows from Equation 3. Observe that if $|\bar{\mathcal{G}}|_F| < 2^m$, then by definition, F is not shattered by $\bar{\mathcal{G}}$, and this implies that $\operatorname{vc}(\bar{\mathcal{G}}) < m$. Thus, to conclude the proof, we need to find the smallest m such that $\binom{mk}{<d^*} < 2^m$. It suffices to check that $m = O(d^* \log k)$ satisfies this condition. \Box

Lemma A.1 (Montasser et al. [2019]). For any $k \in \mathbb{N}$ and fixed function $\phi : (\mathcal{X} \times \mathcal{Y})^k \to \mathcal{Y}^{\mathcal{X}}$, for any distribution P over $\mathcal{X} \times \mathcal{Y}$ and any $m \in \mathbb{N}$, for $S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$ iid P-distributed random variables, with probability at least $1 - \delta$, if $\exists i_1, \ldots, i_k \in \{1, \ldots, m\}$ s.t. $\hat{R}_{\mathcal{U}}(\phi((x_{i_1}, y_{i_1}), \ldots, (x_{i_k}, y_{i_k})); S) = 0$, then

$$R_{\mathcal{U}}(\phi((x_{i_1}, y_{i_1}), \dots, (x_{i_k}, y_{i_k})); P) \le \frac{1}{m-k}(k\ln(m) + \ln(1/\delta)).$$

Proof of Theorem 3.5. We begin with describing the construction of the adversary \mathcal{U} . Let $m \in \mathbb{N}$; we will construct \mathcal{U} with $|\mathcal{U}| = 2^m$, supposing $|\mathcal{X}| \ge 2\binom{2^{10m}}{2^m} + 2^{10m}$. Let $Z = \{z_1, \ldots, z_{2^{10m}}\} \subset \mathcal{X}$ be a set of 2^{10m} unique points from \mathcal{X} . For each subset $L \subset Z$ where $|L| = 2^m$, pick a unique pair $x_L^+, x_L^- \in \mathcal{X} \setminus Z$ and define $\mathcal{U}(x_L^+) = \mathcal{U}(x_L^-) = L$. That is, for every choice L of 2^m perturbations from Z, there is a corresponding pair x_L^+, x_L^- where $\mathcal{U}(x_L^+) = \mathcal{U}(x_L^-) = L$. For any point $x \in \mathcal{X} \setminus Z$ that is remaining, define $\mathcal{U}(x) = \{\}$.

Let \mathcal{B} be an arbitrary reduction algorithm, and let $\varepsilon > 0$ be the error requirement. We will now describe the construction of the target class \mathcal{C} . The target class \mathcal{C} will be constructed randomly. Namely, we will first define a labeling $\tilde{h} : Z \to \mathcal{Y}$ on the perturbations in Z that is positive on the first half of Z and negative on the second half of Z: $\tilde{h}(z_i) = +1$ if $i \leq \frac{2^{10m}}{2}$, and $\tilde{h}(z_i) = -1$ if

 $i > \frac{2^{10m}}{2}$. Divide the positive/negative halves into groups of size 2^m :

$$\underbrace{\{\operatorname{first} 2^m \text{ positives}\}}_{G_1^+}, \dots, \underbrace{\{\operatorname{last} 2^m \text{ positives}\}}_{G_{2^9m-1}^+} \mid \underbrace{\{\operatorname{first} 2^m \text{ negatives}\}}_{G_1^-}, \dots, \underbrace{\{\operatorname{last} 2^m \text{ negatives}\}}_{G_{2^9m-1}^-}, \dots, \underbrace{\{\operatorname{last} 2^m \text{ negatives}}_{G_{2^9m-1}^-}, \dots, \underbrace{\{\operatorname{last} 2^m \text{ negativ$$

Let $\varepsilon' = \varepsilon/2$. The target concept $h^* : \mathcal{X} \to \mathcal{Y}$ is generated by randomly flipping the labels of an ε' fraction of the points in each group $G_1^+, \ldots, G_{2^{9m-1}}^+$ from positive to negative and randomly flipping the labels of an ε' fraction of the points in each group $G_1^-, \ldots, G_{2^{9m-1}}^-$ from negative to positive. This defines h^* on Z; then for every pair $x^+, x^- \in \mathcal{X} \setminus Z$ where $\mathcal{U}(x^+) = \mathcal{U}(x^-) \neq \{\}$, define $h^*(x^+) = +1$ and $h^*(x^-) = -1$. Once h^* is generated, we define the distribution D_{h^*} over $\mathcal{X} \times \mathcal{Y}$ that will be used in the lower bound by swapping the ε' fractions of points with the flipped labels in each pair $(G_1^+, G_1^-), \ldots, (G_{2^{9m-1}}^+, G_{2^{9m-1}}^-)$ which defines new positive/negative pairs: $(G(h^*)_1^+, G(h^*)_1^-), \ldots, (G(h^*)_{2^{9m-1}}^+, G(h^*)_{2^{9m-1}}^-)$. Let $x_i^+, = \mathcal{U}^{-1}(G(h^*)_i^+)$ and $\dots, x_i^- = \mathcal{U}^{-1}(G(h^*)_i^-)$ for each $i \in [2^{9m-1}]$ (\mathcal{U}^{-1} returns a pair of points). Observe that by definition of h^* on $\mathcal{X} \setminus Z$, we have that $h^*(x_i^+) = +1$ and $h^*(x_i^-) = -1$ since $h^*(z) = +1 \forall z \in G(h^*)_i^+$ and $h^*(z) = -1 \forall z \in G(h^*)_i^-$. Let D_{h^*} be a uniform distribution over $(x_1^+, +1), (x_1^-, -1), \ldots, (x_{2^{9m-1}}^+, +1), (x_{2^{9m-1}}^-, -1)$.

Let $T \leq \frac{\log 2^m}{\log(1/\varepsilon')}$. Define a randomly-constructed target class $C = \{h_1, \ldots, h_T, h_{T+1}\}$ where $h_{T+1} = h^*$ and h_1, h_2, \ldots, h_T are generated according the following process: If t = 1, then $h_1 := \tilde{h}$ (augmented to all of \mathcal{X} by letting $\tilde{h}(x) = h^*(x)$ for all $x \in \mathcal{X} \setminus Z$). For $t \geq 2$, let $\text{DIS}_{t-1} = \{z \in Z : h_{t-1}(z) \neq h^*(z)\}$, and construct h_t by flipping a uniform randomly-selected $1 - \varepsilon'$ fraction of the labels of h_{t-1} in $G_i^+ \cap \text{DIS}_{t-1}$ and $1 - \varepsilon'$ fraction of the labels of h_{t-1} in $G_i^- \cap \text{DIS}_{t-1}$ for each $i \in [2^{9m-1}]$. Observe that by construction, h_1, \ldots, h_T satisfy the property that they agree with h^* on $\mathcal{X} \setminus Z$, i.e. $h_t(x) = h^*(x)$ for each $t \leq T$ and each $x \in \mathcal{X} \setminus Z$.

We now state a few properties of the randomly-constructed target class C that we will use in the remainder of the proof. First, observe that by definition of DIS_t for $t \leq T$, we have that $G_i^{\pm} \cap \text{DIS}_T \subseteq G_i^{\pm} \cap \text{DIS}_{T-1} \subseteq \cdots \subseteq G_i^{\pm} \cap \text{DIS}_1$ for each $1 \leq i \leq 2^{9m-1}$. In addition,

$$|G_i^{\pm} \cap \text{DIS}_t| \geq \varepsilon' |G_i^{\pm} \cap \text{DIS}_{t-1}|$$
 for each $1 \leq i \leq 2^{9m-1}$.

By the random process generating h^* , we also know that $|G_i^{\pm} \cap \text{DIS}_1| \ge \varepsilon' 2^m$. Combined with the above, this implies that:

$$|G_i^{\pm} \cap \text{DIS}_T| \ge {\varepsilon'}^T 2^m \text{ for each } 1 \le i \le 2^{9m-1}$$

So, for $T \leq \frac{\log 2^m}{\log(2/\varepsilon)}$, we are guaranteed that $|G_i^{\pm} \cap \text{DIS}_T| \geq 1$ for each $1 \leq i \leq 2^{9m-1}$.

We now describe the construction of a PAC learner \mathcal{A} with $vc(\mathcal{A}) = 1$ for the randomly generated concept h^* above; we assume that \mathcal{A} knows \mathcal{C} (but of course, \mathcal{B} does not know \mathcal{C}).

Algorithm 2: Non-Robust PAC Learner \mathcal{A}

Input: Distribution P over \mathcal{X} . **Output:** h_s for the *smallest* $s \in [T]$ with $\operatorname{err}_P(h_s, h^*) \leq \varepsilon$ (or outputting $h_{T+1} = h^*$ if no such s exists).

First, we will show that $vc(\mathcal{A}) = 1$. By definition of \mathcal{A} , it suffices to show that $vc(\mathcal{C}) = vc(\{h^*, h_1, \ldots, h_T\}) = 1$. By definition of h^* and h_1 , it is easy to see that there is a $z \in Z$ where $h^*(z) \neq h_1(z)$, and thus $vc(\mathcal{C}) \geq 1$. Observe that by construction, each predictor in h_1, \ldots, h_T operates as a threshold in each group $G_1^+, G_1^-, \ldots, G_{2^{9m-1}}^+, G_{2^{9m-1}}^-$ (ordered according to the order in which the labels are flipped in the h_1, \ldots, h_T sequence). As a result, each $x \in \mathcal{X}$ has its label flipped at most once in the sequence $(h_1(x), \ldots, h_T(x), h^*(x))$. This is because once the ground-truth label of $x, h^*(x)$, is revealed by some h_t (i.e., $h_t(x) = h^*(x)$), all subsequent predictors $h_{t'}$ satisfy $h_{t'}(x) = h^*(x)$. Thus, for any two points $z, z' \in \mathcal{X}$, the number of possible behaviors $|\{(h(z), h(z')) : h \in \mathcal{C}\}| \leq 3$. Therefore, \mathcal{C} cannot shatter two points. This proves that $vc(\mathcal{C}) \leq 1$.

Analysis Suppose that we run the reduction algorithm \mathcal{B} with non-robust learner \mathcal{A} for T rounds to obtain predictors $h_{s_1} = \mathcal{A}(P_1), \ldots, h_{s_T} = \mathcal{A}(P_T)$. We will show that $\Pr_{h^*}[s_T \leq T|S] > 0$,

meaning that with non-zero probability learner \mathcal{A} will not reveal the ground-truth hypothesis h^* . For $t \leq T$, let E_t denote the event that $\operatorname{err}_{P_t}(h_{s_{t-1}+1},h^*) \leq \varepsilon$. When conditioning on S, s_1, \ldots, s_{t-1} , observe that by construction of the randomized hypothesis class \mathcal{C} , for each $i \leq 2^{9m-1}$ such that $\{(x_i^-, -1), (x_i^+, +1)\} \cap S = \emptyset$, and each $z \in G_i^{\pm} \cap \mathrm{DIS}_{s_{t-1}}$: $\operatorname{Pr}_{h^*}[h^*(z) \neq h_{s_{t-1}+1}(z)|S, s_1, \ldots, s_{t-1}] \leq \varepsilon' = \varepsilon/2$. It follows then by the law of total probability that for any distribution P_t constructed by \mathcal{A} :

$$\mathbb{E}_{h^*}\left[\operatorname{err}_{P_t}(h_{s_{t-1}+1},h^*)|S,s_1,\ldots,s_{t-1}\right] \leq \frac{\varepsilon}{2}.$$

By Markov's inequality, it follows that

$$\Pr_{h^*} \left[\bar{E}_t | S, s_1, \dots, s_{t-1} \right] = \Pr_{h^*} \left[\operatorname{err}_{P_t}(h_{s_{t-1}+1}, h^*) > \varepsilon | S, s_1, \dots, s_{t-1} \right] \\ \leq \frac{\mathbb{E}_{h^*} \left[\operatorname{err}_{P_t}(h_{s_{t-1}+1}, h^*) | S, s_1, \dots, s_{t-1} \right]}{\varepsilon} \leq \frac{1}{2}.$$

By law of total probability,

$$\Pr_{h^*}[s_T \le T|S] \ge \Pr_{h^*}[E_1|S] \times \Pr_{h^*}[E_2|S, E_1] \times \dots \times \Pr_{h^*}[E_T|S, E_1, \dots, E_{T-1}] \ge \left(\frac{1}{2}\right)^T > 0.$$

To conclude the proof, we will show that if the reduction algorithm \mathcal{B} sees at most 1/2 of the support of distribution D_{h^*} through a training set S and makes only $T \leq \frac{\log 2^m}{\log(2/\varepsilon)}$ oracle calls to \mathcal{A} , then it will likely fail in robustly learning h^* . For each $i \leq 2^{9m-1}$, conditioned on the event that $\{(x_i^-, -1), (x_i^+, +1)\} \cap S = \emptyset$, and conditioned on h_{s_1}, \ldots, h_{s_T} , there is a $z \in Z$ that is equally likely to be in $\mathcal{U}(x_i^-)$ or $\mathcal{U}(x_i^+)$. To see why such a point exists, we first describe an equivalent distribution generating h^*, h_1, \ldots, h_T . For each $i \leq 2^{9m-1}$ randomly select a $2\varepsilon'$ fraction of points from G_i^+ and a $2\varepsilon'$ fraction of points from G_i^- . Then, randomly pair the points in each $2\varepsilon'$ fraction to get $\varepsilon'2^m$ pairs z_i, z'_i for each G_i^{\pm} . For each pair z_i, z'_i flip a fair coin c_i : if $c_i = 1, z_i$'s label gets flipped and otherwise if $c_i = 0$ then z'_i 's label gets flipped. This is equivalent to generating h^* by flipping the labels of a uniform randomly-selected ε fraction of points in each G_i^{\pm} as originally described, but is helpful book-keeping that simplifies our analysis. In addition, h_1, \ldots, h_T can be generated in a similar fashion. Since $T \leq \frac{\log 2^m}{\log(2/\varepsilon)}$, we are guaranteed that $|G_i^{\pm} \cap \text{DIS}_{s_T}| \geq 1$. By definition of DIS_{s_T} , this implies that that there is a pair of points z_i, z'_i in each G_i^{\pm} where each $h_{s_t}(z_i) = h_{s_t}(z'_i)$ for $t \leq T$ but $h^*(z_i) \neq h^*(z'_i)$ (i.e., each h_{s_t} never reveals the ground-truth label for at least one pair). And then in the end, if $\{(x_i^-, -1), (x_i^+, +1)\} \cap S = \emptyset$, \mathcal{B} will make some prediction on z_i , and the posterior probability of it being wrong is 1/2.

More formally, for any training dataset $S \sim D_{h^*}^{|S|}$ where $|S| \leq 2^{9m-3}$, any h_{s_1}, \ldots, h_{s_T} returned by \mathcal{A} where $T \leq \frac{\log 2^m}{\log(2/\varepsilon)}$, and any predictor $f : \mathcal{X} \to \mathcal{Y}$ that is picked by \mathcal{B} :

$$\begin{split} & \underset{h^{*}}{\mathbb{E}} \left[\mathbb{R}_{\mathcal{U}}(f; D_{h^{*}}) | S, h_{s_{1}}, \dots, h_{s_{T}} \right] \geq \underset{h^{*}}{\mathbb{E}} \left[\frac{1}{2^{9m}} \sum_{\substack{(x,y) \notin S, \\ (x,y) \in \text{supp}(D_{h^{*}})}} \sup_{z \in \mathcal{U}(x)} \mathbbm{1}[f(z) \neq y] \middle| S, h_{s_{1}}, \dots, h_{s_{T}} \right] \\ &= \frac{1}{2^{9m}} \sum_{i=1}^{2^{9m-1}} \underset{h^{*}}{\Pr} \left[\left((x_{i}^{+}, +1), (x_{i}^{-}, -1) \notin S \right) \land \\ & \left(\exists z \in \mathcal{U}(x_{i}^{+}) \text{ s.t. } f(z) \neq +1 \lor \exists z \in \mathcal{U}(x_{i}^{-}) \text{ s.t. } f(z) \neq -1 \right) \middle| S, h_{s_{1}}, \dots, h_{s_{T}} \right] \\ &\geq \frac{2^{9m-1}}{2^{9m}} \frac{1}{2} = \frac{1}{4}. \end{split}$$

This implies that, for any \mathcal{B} limited to $n \leq 2^{9m-3}$ training examples and $T \leq \frac{m}{\log_2(2/\varepsilon)}$ queries, there exists a *deterministic* choice of h^* and h_1, \ldots, h_T , and a corresponding learner \mathcal{A} that is a

PAC learner for $\{h^*\}$ using hypothesis class $\{h^*, h_1, \ldots, h_T\}$ of VC dimension 1, such that, for $S \sim D_{h^*}^n, \mathbb{E}_S[\mathbb{R}_U(f; D_{h^*})] \geq \frac{1}{4}$.

Proof sketch of Claim 4.2. Let \mathcal{B} be an arbitrary reduction algorithm. Let $x_0, x_1 \in \mathcal{X}$, and $k \in \mathbb{N}$. Pick arbitrary points $Z = \{z_1, \ldots, z_{2k}\} \subseteq \mathcal{X}$. Let $X = \{x_0, x_1\} \cup Z$. Let $b \in \{0, 1\}^{2k}$ be a bit string drawn uniformly at random from the set $\{b \in \{0, 1\}^{2k} : \sum_i b_i = k\}$, think of this as a random partition of Z into two equal sets Z_0 and Z_1 . For each $y \in \{0, 1\}$, define $\mathcal{U}_b(x_y)$ to include x_y and all perturbations $z \in Z_y$. Also, foreach $z \in Z$ define $\mathcal{U}_b(z) = \{z\}$. Similarly, define target class \mathcal{C}_b to include only a single hypothesis c_b where $c_b(\mathcal{U}(x_0)) = 0$ and $c_b(\mathcal{U}(x_1)) = 1$. We will consider an ERM that uses the set of thresholds $\mathcal{H}_{\phi} = \{x \mapsto \mathbb{1}[\phi(x) \ge \theta] : \theta \in \mathbb{R}\}$ as its hypothesis class, where ϕ is a random embedding such that for each $z_0 \in \mathcal{U}_b(x_0)$ and each $z_1 \in \mathcal{U}_b(x_1) : \phi(z_0) < \phi(z_1)$; this guarantees that the random hypothesis c_b is realized by some $h \in \mathcal{H}_{\phi}$. On any input $L \subseteq X \times \{0, 1\}$, we define the ERM to return the earliest possible threshold that reveals as few 0's as possible.

Since algorithm \mathcal{B} only sees training data $S = \{(x_0, 0), (x_1, 1)\}$ as its input, by picking b uniformly at random, \mathcal{B} has no way of knowing which perturbations belong to $\mathcal{U}(x_0)$ and which belong to $\mathcal{U}(x_1)$, and therefore its forced to call the mistake oracle $O_{\mathcal{U}}$ at least k times. The ERM oracle is designed such that it will reveal as little information about this as possible.

Suppose that we run algorithm \mathcal{B} for T rounds, where in each round $t \leq T$, \mathcal{B} maintains a predictor $f_t : X \to \{0, 1\}$ that determines that labeling of x_0, x_1 and the set of perturbations Z. We will show that, in expectation over the random choice of b and ϕ , in order for the final predictor f_T outputted by \mathcal{B} to have robust loss zero on S, i.e. $\mathbb{R}_{\mathcal{U}_h}(f_T) = 0$, the number of rounds T needs to be at least k.

On each round $t \leq T$, \mathcal{B} is allowed to:

- 1. Query the mistake oracle $O_{\mathcal{U}}$ with a query consisting of some predictor $g_t : X \to \{0, 1\}$ and a point $(x, y) \in X \times \{0, 1\}$.
- 2. Query the ERM oracle with a dataset $L_t \subseteq X \times \{0, 1\}$.

Let $M_t = \sum_{z \in Z} \mathbb{1}[f_t(z) \neq c_b(z)]$ be the number of mistakes at round t, and let $H_t = \{g_i, (x_i, y_i), L_i\}_{i \leq t}$ denote the history of queries. Then, observe that

$$\mathbb{E}_{b,\phi}[M_t | M_{t-1}, H_{t-1}] \ge M_{t-1} - 1.$$

This is because oracle $O_{\mathcal{U}}$ reveals the ground truth label of at most 1 point at round t, and the ERM will move the threshold by at most one position. This implies that $\mathbb{E}_{b,\phi}[M_T|M_0, H_0] \ge M_0 - T$. We can further condition on the event that $M_0 \ge k$ which has non-zero probability (since b is picked uniformly at random). This implies, by the probabilistic method, that there exists b, ϕ such that for $T \le k - 1$, $M_T \ge 1$. Therefore, by definition of M_T , f_T is not be robustly correct on S for $T \le k - 1$.

Proof of Theorem 4.4. Let \mathcal{U} be an arbitrary adversary and $O_{\mathcal{U}}$ its corresponding mistake oracle. Let $\mathcal{C} \subseteq \mathcal{Y}^{\mathcal{X}}$ be an arbitrary target class, and \mathcal{A} an online learner for \mathcal{C} with mistake bound $M_{\mathcal{A}} < \infty$. We assume w.l.o.g. that the online learner \mathcal{A} is conservative, meaning that it does not update its state unless it makes a mistake. Algorithm 3 in essence is a standard conversion of a learner in the mistake bound model to a learner in the PAC model (see e.g. Balcan [2010]):

Algorithm 3: Robust Learner with a Mistake Oracle.

Input: $S = \{(x_1, y_1), \dots, (x_m, y_m)\}, \varepsilon, \delta$, black-box access to a nonline learner \mathcal{A} , black-box access to a mistake oracle $O_{\mathcal{U}}$

1 Initialize $h_0 = \mathcal{A}(\emptyset)$.

2 for $i \leq m$ do

- 3 Certify the robustness of h on (x_i, y_i) by asking the mistake oracle $O_{\mathcal{U}}$.
- 4 If h_t is not robust on (x_i, y_i) , update h_t by running \mathcal{A} on (z, y_i) , where z is the perturbation returned by $O_{\mathcal{U}}$.
- 5 Break when h_t is robustly correct on a consecutive sequence of length $\frac{1}{\varepsilon} \log\left(\frac{M_A}{\delta}\right)$.

Output: h_t .

Analysis Let \mathcal{D} be an arbitrary distribution over $\mathcal{X} \times \mathcal{Y}$ that is robustly realizable with some concept $c \in \mathcal{C}$, i.e., $R_{\mathcal{U}}(c; \mathcal{D}) = 0$. Fix $\varepsilon, \delta \in (0, 1)$ and a sample size $m = 2\frac{M_{\mathcal{A}}}{\varepsilon} \log\left(\frac{M_{\mathcal{A}}}{\delta}\right)$.

Since online learner \mathcal{A} has a mistake bound of $M_{\mathcal{A}}$, Algorithm 3 will terminate in at most $\frac{M_{\mathcal{A}}}{\varepsilon} \log\left(\frac{M_{\mathcal{A}}}{\delta}\right)$ steps of certification, which of course is an upperbound on the number of calls to the mistake oracle $O_{\mathcal{U}}$, and the number of calls to the online learner \mathcal{A} .

It remains to show that the output of Algorithm 3, the final predictor h, has low robust risk $R_{\mathcal{U}}(h; \mathcal{D})$. Throughout the runtime of Algorithm 3, the online learner can generate a sequence of at most $M_{\mathcal{A}} + 1$ predictors. There's the initial predictor from Step 1, plus the $M_{\mathcal{A}}$ updated predictors corresponding to potential updates by online learner \mathcal{A} . Observe that the probability that the final h has robust risk more than ε

$$\Pr_{S \sim \mathcal{D}^m} [\mathbf{R}_{\mathcal{U}}(h; \mathcal{D}) > \varepsilon] \leq \Pr_{S \sim \mathcal{D}^m} [\exists j \in [M_{\mathcal{A}} + 1] \text{ s.t. } \mathbf{R}_{\mathcal{U}}(h_j; \mathcal{D}) > \varepsilon] \leq (M_{\mathcal{A}} + 1)(1 - \varepsilon)^{\frac{1}{\varepsilon} \log\left(\frac{M_{\mathcal{A}} + 1}{\delta}\right)} \leq \delta.$$

Therefore, with probability at least $1 - \delta$ over $S \sim \mathcal{D}^m$, Algorithm 3 outputs a predictor h with robust risk $R_{\mathcal{U}}(h; \mathcal{D}) \leq \varepsilon$. Thus, Algorithm 3 robustly PAC learns \mathcal{C} w.r.t. adversary \mathcal{U} .