A Appendix

Proof of Lemma 3.2. Consider a dual space $\overline{\mathcal{G}}$: a set of functions $\bar{g}_{x}: \operatorname{co}^{k}(\mathcal{H}) \rightarrow \mathcal{Y}$ defined as $\bar{g}_{x}(f)=f(x)$ for each $f=\operatorname{MAJ}\left(h_{1}, \ldots, h_{k}\right) \in \operatorname{co}^{k}(\mathcal{H})$ and each $x \in \mathcal{X}$. It follows by definition of dual VC dimension that $\mathrm{vc}(\overline{\mathcal{G}})=\mathrm{vc}^{*}\left(\mathrm{co}^{k}(\mathcal{H})\right)$. Similarly, define another dual space \mathcal{G} : a set of functions $g: \mathcal{H} \rightarrow \mathcal{Y}$ defined as $g(x)=h(x)$ for each $h \in \mathcal{H}$ and each $x \in \mathcal{X}$. We know that $\operatorname{vc}(\mathcal{G})=\operatorname{vc}^{*}(\mathcal{H})=d^{*}$. Observe that by definition of \mathcal{G} and $\overline{\mathcal{G}}$, we have that for each $x \in \mathcal{X}$ and each $f=\operatorname{MAJ}\left(h_{1}, \ldots, h_{k}\right) \in \operatorname{co}^{k}(\mathcal{H})$,

$$
\bar{g}_{x}(f)=f(x)=\operatorname{MAJ}\left(h_{1}, \ldots, h_{k}\right)(x)=\operatorname{sign}\left(\sum_{i=1}^{k} h_{i}(x)\right)=\operatorname{sign}\left(\sum_{i=1}^{k} g_{x}\left(h_{i}\right)\right)
$$

By the Sauer-Shelah Lemma applied to dual class \mathcal{G}, for any set $H=\left\{h_{1}, \ldots, h_{n}\right\} \subseteq \mathcal{H}$, the number of possible behaviors

$$
\begin{equation*}
|\mathcal{G}|_{H}\left|:=\left|\left\{\left(g_{x}\left(h_{1}\right), \ldots, g_{x}\left(h_{n}\right)\right): x \in \mathcal{X}\right\}\right| \leq\binom{ n}{\leq d^{*}} .\right. \tag{3}
\end{equation*}
$$

Consider a set $F=\left\{f_{1}, \ldots, f_{m}\right\} \subseteq \operatorname{co}^{k}(\mathcal{H})$, the number of possible behaviors can be upperbounded as follows:

$$
\begin{aligned}
|\overline{\mathcal{G}}|_{F} \mid & =\left|\left\{\left(\bar{g}_{x}\left(f_{1}\right), \ldots, \bar{g}_{x}\left(f_{m}\right)\right): x \in \mathcal{X}\right\}\right| \\
& =\left|\left\{\left(\bar{g}_{x}\left(\operatorname{MAJ}\left(h_{1}^{1}, \ldots, h_{1}^{k}\right)\right), \ldots, \bar{g}_{x}\left(\operatorname{MAJ}\left(h_{m}^{1}, \ldots, h_{m}^{k}\right)\right)\right): x \in \mathcal{X}\right\}\right| \\
& =\left|\left\{\left(\operatorname{sign}\left(\sum_{i=1}^{k} g_{x}\left(h_{i}\right)\right), \ldots, \operatorname{sign}\left(\sum_{i=1}^{k} g_{x}\left(h_{i}\right)\right)\right): x \in \mathcal{X}\right\}\right| \\
& \left(\frac{i)}{\leq}\left|\left\{\left(g_{x}\left(h_{1}^{1}\right), \ldots, g_{x}\left(h_{1}^{k}\right), g_{x}\left(h_{2}^{1}\right), \ldots, g_{x}\left(h_{2}^{k}\right), \ldots, g_{x}\left(h_{m}^{1}\right), \ldots, g_{x}\left(h_{m}^{k}\right)\right): x \in \mathcal{X}\right\}\right|\right. \\
& \stackrel{(i i)}{\leq}\binom{m k}{\leq d^{*}}
\end{aligned}
$$

where (i) follows from observing that each expanded vector $\left(g_{x}\left(h_{i}^{1}\right), \ldots, g_{x}\left(h_{i}^{k}\right)\right)_{i=1}^{m} \in \mathcal{Y}^{m k}$ can map to at most one vector $\left(\operatorname{sign}\left(\sum_{i=1}^{k} g_{x}\left(h_{i}\right)\right), \ldots, \operatorname{sign}\left(\sum_{i=1}^{k} g_{x}\left(h_{i}\right)\right)\right) \in \mathcal{Y}^{m}$, and (ii) follows from Equation 3. Observe that if $|\overline{\mathcal{G}}|_{F} \mid<2^{m}$, then by definition, F is not shattered by $\overline{\mathcal{G}}$, and this implies that $\operatorname{vc}(\overline{\mathcal{G}})<m$. Thus, to conclude the proof, we need to find the smallest m such that $\binom{m k}{\leq d^{*}}<2^{m}$. It suffices to check that $m=O\left(d^{*} \log k\right)$ satisfies this condition.

Lemma A. 1 (Montasser et al. [2019]). For any $k \in \mathbb{N}$ and fixed function $\phi:(\mathcal{X} \times \mathcal{Y})^{k} \rightarrow$ $\mathcal{Y}^{\mathcal{X}}$, for any distribution P over $\mathcal{X} \times \mathcal{Y}$ and any $m \in \mathbb{N}$, for $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ iid P-distributed random variables, with probability at least $1-\delta$, if $\exists i_{1}, \ldots, i_{k} \in\{1, \ldots, m\}$ s.t. $\hat{R}_{\mathcal{U}}\left(\phi\left(\left(x_{i_{1}}, y_{i_{1}}\right), \ldots,\left(x_{i_{k}}, y_{i_{k}}\right)\right) ; S\right)=0$, then

$$
R_{\mathcal{U}}\left(\phi\left(\left(x_{i_{1}}, y_{i_{1}}\right), \ldots,\left(x_{i_{k}}, y_{i_{k}}\right)\right) ; P\right) \leq \frac{1}{m-k}(k \ln (m)+\ln (1 / \delta))
$$

Proof of Theorem 3.5. We begin with describing the construction of the adversary \mathcal{U}. Let $m \in \mathbb{N}$; we will construct \mathcal{U} with $|\mathcal{U}|=2^{m}$, supposing $|\mathcal{X}| \geq 2\binom{2^{10 m}}{2^{m}}+2^{10 m}$. Let $Z=\left\{z_{1}, \ldots, z_{2^{10 m}}\right\} \subset \mathcal{X}$ be a set of $2^{10 m}$ unique points from \mathcal{X}. For each subset $L \subset Z$ where $|L|=2^{m}$, pick a unique pair $x_{L}^{+}, x_{L}^{-} \in \mathcal{X} \backslash Z$ and define $\mathcal{U}\left(x_{L}^{+}\right)=\mathcal{U}\left(x_{L}^{-}\right)=L$. That is, for every choice L of 2^{m} perturbations from Z, there is a corresponding pair x_{L}^{+}, x_{L}^{-}where $\mathcal{U}\left(x_{L}^{+}\right)=\mathcal{U}\left(x_{L}^{-}\right)=L$. For any point $x \in \mathcal{X} \backslash Z$ that is remaining, define $\mathcal{U}(x)=\{ \}$.
Let \mathcal{B} be an arbitrary reduction algorithm, and let $\varepsilon>0$ be the error requirement. We will now describe the construction of the target class \mathcal{C}. The target class \mathcal{C} will be constructed randomly Namely, we will first define a labeling $\tilde{h}: Z \rightarrow \mathcal{Y}$ on the perturbations in Z that is positive on the first half of Z and negative on the second half of $Z: \tilde{h}\left(z_{i}\right)=+1$ if $i \leq \frac{2^{10 m}}{2}$, and $\tilde{h}\left(z_{i}\right)=-1$ if
$i>\frac{2^{10 m}}{2}$. Divide the positive/negative halves into groups of size 2^{m} :

$$
\underbrace{\left\{\text { first } 2^{m} \text { positives }\right\}}_{G_{1}^{+}}, \ldots, \underbrace{\left\{\text { last } 2^{m} \text { positives }\right\}}_{G_{2^{9 m-1}}^{+}} \mid \underbrace{\left\{\text { first } 2^{m} \text { negatives }\right\}}_{G_{1}^{-}}, \ldots, \underbrace{\left\{\text { last } 2^{m} \text { negatives }\right\}}_{G_{2^{9 m-1}}^{-}}
$$

Let $\varepsilon^{\prime}=\varepsilon / 2$. The target concept $h^{*}: \mathcal{X} \rightarrow \mathcal{Y}$ is generated by randomly flipping the labels of an ε^{\prime} fraction of the points in each group $G_{1}^{+}, \ldots, G_{2^{9 m-1}}^{+}$from positive to negative and randomly flipping the labels of an ε^{\prime} fraction of the points in each group $G_{1}^{-}, \ldots, G_{2^{9 m-1}}^{-}$ from negative to positive. This defines h^{*} on Z; then for every pair $x^{+}, x^{-} \in \mathcal{X} \backslash Z$ where $\mathcal{U}\left(x^{+}\right)=\mathcal{U}\left(x^{-}\right) \neq\{ \}$, define $h^{*}\left(x^{+}\right)=+1$ and $h^{*}\left(x^{-}\right)=-1 . \quad$ Once h^{*} is generated, we define the distribution $D_{h^{*}}$ over $\mathcal{X} \times \mathcal{Y}$ that will be used in the lower bound by swapping the ε^{\prime} fractions of points with the flipped labels in each pair $\left(G_{1}^{+}, G_{1}^{-}\right), \ldots,\left(G_{2^{9 m-1}}^{+}, G_{2^{9 m-1}}^{-}\right)$ which defines new positive/negative pairs: $\left(G\left(h^{*}\right)_{1}^{+}, G\left(h^{*}\right)_{1}^{-}\right), \ldots,\left(G\left(h^{*}\right)_{2^{9 m-1}}^{+}, G\left(h^{*}\right)_{2^{9 m-1}}^{-}\right)$. Let $x_{i}^{+},_{-}=\mathcal{U}^{-1}\left(G\left(h^{*}\right)_{i}^{+}\right)$and ${ }_{-}, x_{i}^{-}=\mathcal{U}^{-1}\left(G\left(h^{*}\right)_{i}^{-}\right)$for each $i \in\left[2^{9 m-1}\right]\left(\mathcal{U}^{-1}\right.$ returns a pair of points). Observe that by definition of h^{*} on $\mathcal{X} \backslash Z$, we have that $h^{*}\left(x_{i}^{+}\right)=+1$ and $h^{*}\left(x_{i}^{-}\right)=-1$ since $h^{*}(z)=+1 \forall z \in G\left(h^{*}\right)_{i}^{+}$and $h^{*}(z)=-1 \forall z \in G\left(h^{*}\right)_{i}^{-}$. Let $D_{h^{*}}$ be a uniform distribution over $\left(x_{1}^{+},+1\right),\left(x_{1}^{-},-1\right), \ldots,\left(x_{2^{9 m-1}}^{+},+1\right),\left(x_{2^{9 m-1}}^{-},-1\right)$.
Let $T \leq \frac{\log 2^{m}}{\log \left(1 / \varepsilon^{\prime}\right)}$. Define a randomly-constructed target class $\mathcal{C}=\left\{h_{1}, \ldots, h_{T}, h_{T+1}\right\}$ where $h_{T+1}=h^{*}$ and $h_{1}, h_{2}, \ldots, h_{T}$ are generated according the following process: If $t=1$, then $h_{1}:=\tilde{h}$ (augmented to all of \mathcal{X} by letting $\tilde{h}(x)=h^{*}(x)$ for all $x \in \mathcal{X} \backslash Z$). For $t \geq 2$, let $\mathrm{DIS}_{t-1}=\left\{z \in Z: h_{t-1}(z) \neq h^{*}(z)\right\}$, and construct h_{t} by flipping a uniform randomly-selected $1-\varepsilon^{\prime}$ fraction of the labels of h_{t-1} in $G_{i}^{+} \cap \mathrm{DIS}_{t-1}$ and $1-\varepsilon^{\prime}$ fraction of the labels of h_{t-1} in $G_{i}^{-} \cap \mathrm{DIS}_{t-1}$ for each $i \in\left[2^{9 m-1}\right]$. Observe that by construction, h_{1}, \ldots, h_{T} satisfy the property that they agree with h^{*} on $\mathcal{X} \backslash Z$, i.e. $h_{t}(x)=h^{*}(x)$ for each $t \leq T$ and each $x \in \mathcal{X} \backslash Z$.
We now state a few properties of the randomly-constructed target class \mathcal{C} that we will use in the remainder of the proof. First, observe that by definition of DIS_{t} for $t \leq T$, we have that $G_{i}^{ \pm} \cap \mathrm{DIS}_{T} \subseteq$ $G_{i}^{ \pm} \cap \mathrm{DIS}_{T-1} \subseteq \cdots \subseteq G_{i}^{ \pm} \cap \mathrm{DIS}_{1}$ for each $1 \leq i \leq 2^{9 m-1}$. In addition,

$$
\left|G_{i}^{ \pm} \cap \mathrm{DIS}_{t}\right| \geq \varepsilon^{\prime}\left|G_{i}^{ \pm} \cap \mathrm{DIS}_{t-1}\right| \text { for each } 1 \leq i \leq 2^{9 m-1}
$$

By the random process generating h^{*}, we also know that $\left|G_{i}^{ \pm} \cap \mathrm{DIS}_{1}\right| \geq \varepsilon^{\prime} 2^{m}$. Combined with the above, this implies that:

$$
\left|G_{i}^{ \pm} \cap \mathrm{DIS}_{T}\right| \geq \varepsilon^{\prime T} 2^{m} \text { for each } 1 \leq i \leq 2^{9 m-1}
$$

So, for $T \leq \frac{\log 2^{m}}{\log (2 / \varepsilon)}$, we are guaranteed that $\left|G_{i}^{ \pm} \cap \operatorname{DIS}_{T}\right| \geq 1$ for each $1 \leq i \leq 2^{9 m-1}$.
We now describe the construction of a PAC learner \mathcal{A} with $\operatorname{vc}(\mathcal{A})=1$ for the randomly generated concept h^{*} above; we assume that \mathcal{A} knows \mathcal{C} (but of course, \mathcal{B} does not know \mathcal{C}).

```
Algorithm 2: Non-Robust PAC Learner \(\mathcal{A}\)
Input: Distribution \(P\) over \(\mathcal{X}\).
Output: \(h_{s}\) for the smallest \(s \in[T]\) with \(\operatorname{err}_{P}\left(h_{s}, h^{*}\right) \leq \varepsilon\) (or outputting \(h_{T+1}=h^{*}\) if no such
    \(s\) exists).
```

First, we will show that $\operatorname{vc}(\mathcal{A})=1$. By definition of \mathcal{A}, it suffices to show that $\operatorname{vc}(\mathcal{C})=$ $\operatorname{vc}\left(\left\{h^{*}, h_{1}, \ldots, h_{T}\right\}\right)=1$. By definition of h^{*} and h_{1}, it is easy to see that there is a $z \in Z$ where $h^{*}(z) \neq h_{1}(z)$, and thus $\operatorname{vc}(\mathcal{C}) \geq 1$. Observe that by construction, each predictor in h_{1}, \ldots, h_{T} operates as a threshold in each group $G_{1}^{+}, G_{1}^{-}, \ldots, G_{2^{9 m-1}}^{+}, G_{2^{9 m-1}}^{-}$(ordered according to the order in which the labels are flipped in the h_{1}, \ldots, h_{T} sequence). As a result, each $x \in \mathcal{X}$ has its label flipped at most once in the sequence $\left(h_{1}(x), \ldots, h_{T}(x), h^{*}(x)\right)$. This is because once the groundtruth label of $x, h^{*}(x)$, is revealed by some h_{t} (i.e., $h_{t}(x)=h^{*}(x)$), all subsequent predictors $h_{t^{\prime}}$ satisfy $h_{t^{\prime}}(x)=h^{*}(x)$. Thus, for any two points $z, z^{\prime} \in \mathcal{X}$, the number of possible behaviors $\left|\left\{\left(h(z), h\left(z^{\prime}\right)\right): h \in \mathcal{C}\right\}\right| \leq 3$. Therefore, \mathcal{C} cannot shatter two points. This proves that $\operatorname{vc}(\mathcal{C}) \leq 1$.

Analysis Suppose that we run the reduction algorithm \mathcal{B} with non-robust learner \mathcal{A} for T rounds to obtain predictors $h_{s_{1}}=\mathcal{A}\left(P_{1}\right), \ldots, h_{s_{T}}=\mathcal{A}\left(P_{T}\right)$. We will show that $\operatorname{Pr}_{h^{*}}\left[s_{T} \leq T \mid S\right]>0$,
meaning that with non-zero probability learner \mathcal{A} will not reveal the ground-truth hypothesis h^{*}. For $t \leq T$, let E_{t} denote the event that $\operatorname{err}_{P_{t}}\left(h_{s_{t-1}+1}, h^{*}\right) \leq \varepsilon$. When conditioning on $S, s_{1}, \ldots, s_{t-1}$, observe that by construction of the randomized hypothesis class \mathcal{C}, for each $i \leq 2^{9 m-1}$ such that $\left\{\left(x_{i}^{-},-1\right),\left(x_{i}^{+},+1\right)\right\} \cap S=\emptyset$, and each $z \in G_{i}^{ \pm} \cap \mathrm{DIS}_{s_{t-1}}$: $\operatorname{Pr}_{h^{*}}\left[h^{*}(z) \neq h_{s_{t-1}+1}(z) \mid S, s_{1}, \ldots, s_{t-1}\right] \leq \varepsilon^{\prime}=\varepsilon / 2$. It follows then by the law of total probability that for any distribution P_{t} constructed by \mathcal{A} :

$$
\underset{h^{*}}{\mathbb{E}}\left[\operatorname{err}_{P_{t}}\left(h_{s_{t-1}+1}, h^{*}\right) \mid S, s_{1}, \ldots, s_{t-1}\right] \leq \frac{\varepsilon}{2}
$$

By Markov's inequality, it follows that

$$
\begin{aligned}
\operatorname{Pr}_{h^{*}}\left[\bar{E}_{t} \mid S, s_{1}, \ldots, s_{t-1}\right] & =\underset{h^{*}}{\operatorname{Pr}}\left[\operatorname{err}_{P_{t}}\left(h_{s_{t-1}+1}, h^{*}\right)>\varepsilon \mid S, s_{1}, \ldots, s_{t-1}\right] \\
& \leq \frac{\mathbb{E}_{h^{*}}\left[\operatorname{err}_{P_{t}}\left(h_{s_{t-1}+1}, h^{*}\right) \mid S, s_{1}, \ldots, s_{t-1}\right]}{\varepsilon} \leq \frac{1}{2}
\end{aligned}
$$

By law of total probability,

$$
\underset{h^{*}}{\operatorname{Pr}}\left[s_{T} \leq T \mid S\right] \geq \operatorname{Pr}_{h^{*}}\left[E_{1} \mid S\right] \times \underset{h^{*}}{\operatorname{Pr}}\left[E_{2} \mid S, E_{1}\right] \times \cdots \times \underset{h^{*}}{\operatorname{Pr}}\left[E_{T} \mid S, E_{1}, \ldots, E_{T-1}\right] \geq\left(\frac{1}{2}\right)^{T}>0
$$

To conclude the proof, we will show that if the reduction algorithm \mathcal{B} sees at most $1 / 2$ of the support of distribution $D_{h^{*}}$ through a training set S and makes only $T \leq \frac{\log 2^{m}}{\log (2 / \varepsilon)}$ oracle calls to \mathcal{A}, then it will likely fail in robustly learning h^{*}. For each $i \leq 2^{9 m-1}$, conditioned on the event that $\left\{\left(x_{i}^{-},-1\right),\left(x_{i}^{+},+1\right)\right\} \cap S=\emptyset$, and conditioned on $h_{s_{1}}, \ldots, h_{s_{T}}$, there is a $z \in Z$ that is equally likely to be in $\mathcal{U}\left(x_{i}^{-}\right)$or $\mathcal{U}\left(x_{i}^{+}\right)$. To see why such a point exists, we first describe an equivalent distribution generating $h^{*}, h_{1}, \ldots, h_{T}$. For each $i \leq 2^{9 m-1}$ randomly select a $2 \varepsilon^{\prime}$ fraction of points from G_{i}^{+}and a $2 \varepsilon^{\prime}$ fraction of points from G_{i}^{-}. Then, randomly pair the points in each $2 \varepsilon^{\prime}$ fraction to get $\varepsilon^{\prime} 2^{m}$ pairs z_{i}, z_{i}^{\prime} for each $G_{i}^{ \pm}$. For each pair z_{i}, z_{i}^{\prime} flip a fair coin c_{i} : if $c_{i}=1, z_{i}$'s label gets flipped and otherwise if $c_{i}=0$ then z_{i}^{\prime} 's label gets flipped. This is equivalent to generating h^{*} by flipping the labels of a uniform randomly-selected ε fraction of points in each $G_{i}^{ \pm}$as originally described, but is helpful book-keeping that simplifies our analysis. In addition, h_{1}, \ldots, h_{T} can be generated in a similar fashion. Since $T \leq \frac{\log 2^{m}}{\log (2 / \varepsilon)}$, we are guaranteed that $\left|G_{i}^{ \pm} \cap \mathrm{DIS}_{s_{T}}\right| \geq 1$. By definition of $\mathrm{DIS}_{s_{T}}$, this implies that that there is a pair of points z_{i}, z_{i}^{\prime} in each $G_{i}^{ \pm}$where each $h_{s_{t}}\left(z_{i}\right)=h_{s_{t}}\left(z_{i}^{\prime}\right)$ for $t \leq T$ but $h^{*}\left(z_{i}\right) \neq h^{*}\left(z_{i}^{\prime}\right)$ (i.e., each $h_{s_{t}}$ never reveals the ground-truth label for at least one pair). And then in the end, if $\left\{\left(x_{i}^{-},-1\right),\left(x_{i}^{+},+1\right)\right\} \cap S=\emptyset, \mathcal{B}$ will make some prediction on z_{i}, and the posterior probability of it being wrong is $1 / 2$.
More formally, for any training dataset $S \sim D_{h^{*}}^{|S|}$ where $|S| \leq 2^{9 m-3}$, any $h_{s_{1}}, \ldots, h_{s_{T}}$ returned by \mathcal{A} where $T \leq \frac{\log 2^{m}}{\log (2 / \varepsilon)}$, and any predictor $f: \mathcal{X} \rightarrow \mathcal{Y}$ that is picked by \mathcal{B} :

$$
\begin{aligned}
& \underset{h^{*}}{\mathbb{E}}\left[\mathrm{R}_{\mathcal{U}}\left(f ; D_{h^{*}}\right) \mid S, h_{s_{1}}, \ldots, h_{s_{T}}\right] \geq \underset{h^{*}}{\mathbb{E}}\left[\left.\frac{1}{2^{9 m}} \sum_{\substack{(x, y) \notin S,(x, y) \in \operatorname{supp}\left(D_{h^{*}}\right)}} \sup _{z \in \mathcal{U}(x)} \mathbb{1}[f(z) \neq y] \right\rvert\, S, h_{s_{1}}, \ldots, h_{s_{T}}\right] \\
& =\frac{1}{2^{9 m}} \sum_{i=1}^{2^{9 m-1}} \operatorname{Pr}_{h^{*}}\left[\left(\left(x_{i}^{+},+1\right),\left(x_{i}^{-},-1\right) \notin S\right) \wedge\right. \\
& \\
& \left.\quad\left(\exists z \in \mathcal{U}\left(x_{i}^{+}\right) \text {s.t. } f(z) \neq+1 \vee \exists z \in \mathcal{U}\left(x_{i}^{-}\right) \text {s.t. } f(z) \neq-1\right) \mid S, h_{s_{1}}, \ldots, h_{s_{T}}\right] \\
& \geq \frac{2^{9 m-1}}{2^{9 m}} \frac{1}{2}=\frac{1}{4} .
\end{aligned}
$$

This implies that, for any \mathcal{B} limited to $n \leq 2^{9 m-3}$ training examples and $T \leq \frac{m}{\log _{2}(2 / \varepsilon)}$ queries, there exists a deterministic choice of h^{*} and h_{1}, \ldots, h_{T}, and a corresponding learner \mathcal{A} that is a

PAC learner for $\left\{h^{*}\right\}$ using hypothesis class $\left\{h^{*}, h_{1}, \ldots, h_{T}\right\}$ of VC dimension 1 , such that, for $S \sim D_{h^{*}}^{n}, \mathbb{E}_{S}\left[\mathrm{R}_{\mathcal{U}}\left(f ; D_{h^{*}}\right)\right] \geq \frac{1}{4}$.

Proof sketch of Claim 4.2. Let \mathcal{B} be an arbitrary reduction algorithm. Let $x_{0}, x_{1} \in \mathcal{X}$, and $k \in \mathbb{N}$. Pick arbitrary points $Z=\left\{z_{1}, \ldots, z_{2 k}\right\} \subseteq \mathcal{X}$. Let $X=\left\{x_{0}, x_{1}\right\} \cup Z$. Let $b \in\{0,1\}^{2 k}$ be a bit string drawn uniformly at random from the set $\left\{b \in\{0,1\}^{2 k}: \sum_{i} b_{i}=k\right\}$, think of this as a random partition of Z into two equal sets Z_{0} and Z_{1}. For each $y \in\{0,1\}$, define $\mathcal{U}_{b}\left(x_{y}\right)$ to include x_{y} and all perturbations $z \in Z_{y}$. Also, foreach $z \in Z$ define $\mathcal{U}_{b}(z)=\{z\}$. Similarly, define target class \mathcal{C}_{b} to include only a single hypothesis c_{b} where $c_{b}\left(\mathcal{U}\left(x_{0}\right)\right)=0$ and $c_{b}\left(\mathcal{U}\left(x_{1}\right)\right)=1$. We will consider an ERM that uses the set of thresholds $\mathcal{H}_{\phi}=\{x \mapsto \mathbb{1}[\phi(x) \geq \theta]: \theta \in \mathbb{R}\}$ as its hypothesis class, where ϕ is a random embedding such that for each $z_{0} \in \mathcal{U}_{b}\left(x_{0}\right)$ and each $z_{1} \in \mathcal{U}_{b}\left(x_{1}\right): \phi\left(z_{0}\right)<\phi\left(z_{1}\right)$; this guarantees that the random hypothesis c_{b} is realized by some $h \in \mathcal{H}_{\phi}$. On any input $L \subseteq X \times\{0,1\}$, we define the ERM to return the earliest possible threshold that reveals as few 0 's as possible.
Since algorithm \mathcal{B} only sees training data $S=\left\{\left(x_{0}, 0\right),\left(x_{1}, 1\right)\right\}$ as its input, by picking b uniformly at random, \mathcal{B} has no way of knowing which perturbations belong to $\mathcal{U}\left(x_{0}\right)$ and which belong to $\mathcal{U}\left(x_{1}\right)$, and therefore its forced to call the mistake oracle $\mathrm{O}_{\mathcal{U}}$ at least k times. The ERM oracle is designed such that it will reveal as little information about this as possible.
Suppose that we run algorithm \mathcal{B} for T rounds, where in each round $t \leq T, \mathcal{B}$ maintains a predictor $f_{t}: X \rightarrow\{0,1\}$ that determines that labeling of x_{0}, x_{1} and the set of perturbations Z. We will show that, in expectation over the random choice of b and ϕ, in order for the final predictor f_{T} outputted by \mathcal{B} to have robust loss zero on S, i.e. $\mathrm{R}_{\mathcal{U}_{b}}\left(f_{T}\right)=0$, the number of rounds T needs to be at least k.
On each round $t \leq T, \mathcal{B}$ is allowed to:

1. Query the mistake oracle $\mathrm{O}_{\mathcal{U}}$ with a query consisting of some predictor $g_{t}: X \rightarrow\{0,1\}$ and a point $(x, y) \in X \times\{0,1\}$.
2. Query the ERM oracle with a dataset $L_{t} \subseteq X \times\{0,1\}$.

Let $M_{t}=\sum_{z \in Z} \mathbb{1}\left[f_{t}(z) \neq c_{b}(z)\right]$ be the number of mistakes at round t, and let $H_{t}=$ $\left\{g_{j},\left(x_{j}, y_{j}\right), L_{j}\right\}_{j \leq t}$ denote the history of queries. Then, observe that

$$
\underset{b, \phi}{\mathbb{E}}\left[M_{t} \mid M_{t-1}, H_{t-1}\right] \geq M_{t-1}-1
$$

This is because oracle $\mathrm{O}_{\mathcal{U}}$ reveals the ground truth label of at most 1 point at round t, and the ERM will move the threshold by at most one position. This implies that $\mathbb{E}_{b, \phi}\left[M_{T} \mid M_{0}, H_{0}\right] \geq M_{0}-T$. We can further condition on the event that $M_{0} \geq k$ which has non-zero probability (since b is picked uniformly at random). This implies, by the probabilistic method, that there exists b, ϕ such that for $T \leq k-1, M_{T} \geq 1$. Therefore, by definition of M_{T}, f_{T} is not be robustly correct on S for $T \leq k-1$.

Proof of Theorem 4.4. Let \mathcal{U} be an arbitrary adversary and $\mathrm{O}_{\mathcal{U}}$ its corresponding mistake oracle. Let $\mathcal{C} \subseteq \mathcal{Y}^{\mathcal{X}}$ be an arbitrary target class, and \mathcal{A} an online learner for \mathcal{C} with mistake bound $M_{\mathcal{A}}<\infty$. We assume w.l.o.g. that the online learner \mathcal{A} is conservative, meaning that it does not update its state unless it makes a mistake. Algorithm 3 in essence is a standard conversion of a learner in the mistake bound model to a learner in the PAC model (see e.g. Balcan [2010]):

```
Algorithm 3: Robust Learner with a Mistake Oracle.
Input: \(S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}, \varepsilon, \delta\), black-box access to a an online learner \(\mathcal{A}\), black-box
    access to a mistake oracle \(\mathrm{O}_{\mathcal{U}}\)
Initialize \(h_{0}=\mathcal{A}(\emptyset)\).
for \(i \leq m\) do
    Certify the robustness of \(h\) on \(\left(x_{i}, y_{i}\right)\) by asking the mistake oracle \(\mathrm{O}_{\mathcal{U}}\).
    If \(h_{t}\) is not robust on \(\left(x_{i}, y_{i}\right)\), update \(h_{t}\) by running \(\mathcal{A}\) on \(\left(z, y_{i}\right)\), where \(z\) is the perturbation
        returned by \(\mathrm{O}_{\mathcal{U}}\).
    Break when \(h_{t}\) is robustly correct on a consecutive sequence of length \(\frac{1}{\varepsilon} \log \left(\frac{M_{A}}{\delta}\right)\).
Output: \(h_{t}\).
```

Analysis Let \mathcal{D} be an arbitrary distribution over $\mathcal{X} \times \mathcal{Y}$ that is robustly realizable with some concept $c \in \mathcal{C}$,i.e., $\mathrm{R}_{\mathcal{U}}(c ; \mathcal{D})=0$. Fix $\varepsilon, \delta \in(0,1)$ and a sample size $m=2 \frac{M_{\mathcal{A}}}{\varepsilon} \log \left(\frac{M_{\mathcal{A}}}{\delta}\right)$.
Since online learner \mathcal{A} has a mistake bound of $M_{\mathcal{A}}$, Algorithm 3 will terminate in at most $\frac{M_{\mathcal{A}}}{\varepsilon} \log \left(\frac{M_{\mathcal{A}}}{\delta}\right)$ steps of certification, which of course is an upperbound on the number of calls to the mistake oracle $\mathrm{O}_{\mathcal{U}}$, and the number of calls to the online learner \mathcal{A}.
It remains to show that the output of Algorithm 3, the final predictor h, has low robust risk $\mathrm{R}_{\mathcal{U}}(h ; \mathcal{D})$. Throughout the runtime of Algorithm 3, the online learner can generate a sequence of at most $M_{\mathcal{A}}+1$ predictors. There's the initial predictor from Step 1, plus the $M_{\mathcal{A}}$ updated predictors corresponding to potential updates by online learner \mathcal{A}. Observe that the probability that the final h has robust risk more than ε

$$
\operatorname{Pr}_{S \sim \mathcal{D}^{m}}\left[\operatorname{R}_{\mathcal{U}}(h ; \mathcal{D})>\varepsilon\right] \leq \operatorname{Pr}_{S \sim \mathcal{D}^{m}}\left[\exists j \in\left[M_{\mathcal{A}}+1\right] \text { s.t. } \mathrm{R}_{\mathcal{U}}\left(h_{j} ; \mathcal{D}\right)>\varepsilon\right] \leq\left(M_{\mathcal{A}}+1\right)(1-\varepsilon)^{\frac{1}{\varepsilon} \log \left(\frac{M_{\mathcal{A}}+1}{\delta}\right)} \leq \delta
$$

Therefore, with probability at least $1-\delta$ over $S \sim \mathcal{D}^{m}$, Algorithm 3 outputs a predictor h with robust risk $\mathrm{R}_{\mathcal{U}}(h ; \mathcal{D}) \leq \varepsilon$. Thus, Algorithm 3 robustly PAC learns \mathcal{C} w.r.t. adversary \mathcal{U}.

