Federated Principal Component Analysis

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental


Andreas Grammenos, Rodrigo Mendoza Smith, Jon Crowcroft, Cecilia Mascolo


We present a federated, asynchronous, and $(\varepsilon, \delta)$-differentially private algorithm for $\PCA$ in the memory-limited setting. % Our algorithm incrementally computes local model updates using a streaming procedure and adaptively estimates its $r$ leading principal components when only $\mathcal{O}(dr)$ memory is available with $d$ being the dimensionality of the data. % We guarantee differential privacy via an input-perturbation scheme in which the covariance matrix of a dataset $\B{X} \in \R^{d \times n}$ is perturbed with a non-symmetric random Gaussian matrix with variance in $\mathcal{O}\left(\left(\frac{d}{n}\right)^2 \log d \right)$, thus improving upon the state-of-the-art. % Furthermore, contrary to previous federated or distributed algorithms for $\PCA$, our algorithm is also invariant to permutations in the incoming data, which provides robustness against straggler or failed nodes. % Numerical simulations show that, while using limited-memory, our algorithm exhibits performance that closely matches or outperforms traditional non-federated algorithms, and in the absence of communication latency, it exhibits attractive horizontal scalability.