
13

Supplementary Material

This comes as supplementary material to the paper Federated Principal Component Analysis. The
appendix is structured as follows:

1. Federated-PCA’s local update guarantees,

2. Federated-PCA’s differential privacy properties,

3. In-depth analysis of algorithm’s federation,

4. Additional evaluation and discussion.

Furthermore, we complement our theoretical analysis with additional empirical evaluation on syn-
thetic and real datasets which include details on memory consumption.

A Local Update Guarantees

We note that the local updating procedure in Algorithm 3 inherits some theoretical guarantees
from [17]. We leverage on these to provide a bound for the adaptive case. Specifically, let μ be an
unknown probability distribution supported on R

d with zero mean. The informal objective is to find
an r-dimensional subspace U that provides the best approximation with respect to the mass of μ. That
is, provided that y is drawn from μ, the target is to find an r-dimensional subspace U that minimises
the population risk. This is done by solving

min
U∈G(d,r)

E
y∼μ

‖y −PUy‖22 (9)

where the Grassmanian G(d, r) is the manifold of all r-dimensional subspaces in R
d and PU ∈ R

d×d

is the orthogonal projection onto U . Unfortunately, the value of μ is unknown and cannot be used
to directly solve (9), but provided we have access to a block of samples {yt}τt=1 ∈ R

d that are
independently drawn from μ, then (9) can be reformulated using the empirical risk by

min
U∈G(d,r)

1

τ

τ∑
t=1

‖yt −PUyt‖22 . (10)

Given that
∑τ

t=1 ‖yt −PUyt‖22 = ‖Yτ −PUYτ‖2F , it follows by the EYM Theorem [16, 38], that

PUYτ is the best rank-r approximation to Yτ which is given by Ŷτ = SVDr(Yτ). Therefore,

U = span(Ŷτ), which implies that ‖Yτ −PUYτ‖2F = ‖Yτ − Ŷτ‖2F = ρ2r(Yτ), so the solution of
(10) equals ρ2r(Yτ)/τ . For completeness the theorem is shown below.

Theorem 1 ([17]). Suppose {yt}τt=1 ⊂ R
d are independently drawn from a zero-mean Gaussian

distribution with covariance matrix Ξ ∈ R
d×d and form Yτ = [y1 · · ·yτ] ∈ R

d×τ . Let λ1 ≥ · · · ≥
λd be the eigenvalues of Ξ and ρ2r = ρ2r(Ξ) be its residual. Define

ηr =
λ1

λr

+

√
2αρ2r

p
1
3 λr

, (11)

Let Ŷτ be defined as in (3), U = span(Ŷτ) and α, p, c be constants such that 1 ≤ α ≤√
τ/ log τ ,

p > 1 and c > 0. Then, if b ≥ max(αp
1
3 r(p

1
6 − 1)−2, cαr) and τ ≥ pη2rb, it holds, with probability

at most τ−cα2

+ e−cαr that

‖Yτ − Ŷτ‖2F
τ

� Gα,b,p,r,τ

E
y∼μ

‖y −PUy‖22 � Gα,b,p,r,τ + α(d− r)λ1

√
log τ

τ

where

Gα,b,p,r,τ =
αp

1
3 4pη

2
r

(p
1
3 − 1)2

min

(
λ1

λr

ρ2r, rλ1 + ρ2r

) (
τ

pη2
rb

)pη2
r−1

13

A.1 Interpretation of each local worker as a streaming, stochastic solver for PCA 14

The condition τ ≥ pη2rb is only required to obtain a tidy bound and is not necessary in the general
case. When considering only asymptotic dominant terms Theorem 1 reduces to,

‖Yτ −PUYτ‖2F ∝
(τ
b

)pη2
r−1

‖Yτ − Ŷτ‖2F (12)

Practically speaking, assuming rank(Ξ) ≤ r and ρ2r(Ξ) =
∑d

i=r+1 λi(Ξ) we can read that,

PUYτ = Ŷτ = Yτ meaning that the outputs of offline truncated SVD and [17] coincide.

A.1 Interpretation of each local worker as a streaming, stochastic solver for PCA

It is easy to interpret each solver as a streaming, stochastic algorithm for Principal Component
Analysis (PCA). To see this, note that (9) is equivalent to maximising Ey∼μ‖UUTy‖2F over

Z = {U ∈ R
d×r : UTU = Ir×r} The restriction UTU = Ir×r can be relaxed to UTU � Ir,

where A � B denotes that B−A is a positive semi-definite matrix. Using the Schur’s complement,
we can formulate this program as

max E
y∼μ
〈UUT ,yyT 〉

s. t.

[
In U

UT Ir

]
� 0 (13)

Note that, (13) has an objective function that is convex and that the feasible set is also conic and
convex. However, its gradient can only be computed when the probability measure μ is known, since

otherwise Ξ = E[yyT] ∈ R
d×d is unknown. If μ is known, and an iterate of the form Ŝt is provided,

we could draw a random vector yt+1 ∈ R
d from the probability measure μ while moving along

the direction of 2yt+1y
T
t+1Ŝt. This is because E[2yt+1y

T
t+1Ŝt] = 2ΞŜt which is then followed by

back-projection onto the feasible set Z . Namely,

Ŝt+1 = P
(
St + 2αt+1yt+1y

T
t+1Ŝt

)
, (14)

One can see that in (14), P(A) projects onto the unitary ball of the spectral norm by clipping at one
all of A’s singular values exceeding one.

A.2 Adaptive Rank Estimation

Our algorithm provides a scheme to adaptively adjust the rank of each individual estimation based on
the distribution seen so far. This can be helpful when there are distribution shifts and/or changes in
the data over time. The scheme uses a thresholding procedure that consists in bounding the minimum
and maximum contributions of σr(Yτ) to the variance

∑r
i=1 σi(Yτ) of the dataset. That is, by

enforcing

EYτ

r =
σr(Yτ)∑r
i=1 σi(Yτ)

∈ [α, β], (15)

for some α, β > 0 and increasing r whenever Er(Yτ) > β or decreasing it when Er(Yτ) < α. As a
guideline, from our experiments a typical ratio of α/β should be less or equal to 0.2 which could be
used as an reference point when picking their values. This ensure that each client will have a bounded
Frobenius norm at any given point in time. With this procedure, we are able to bound the global error
as

ρrmax(α,β)(Ykb) ≤ Yerr ≤ ρrmin(α,β)(Ykb). (16)

Proof. At iteration k ∈ {1, . . . ,K}, each node computes Ŷlocal
kb , the best rank-r approximation of

Ykb using iteration (3). Hence, for each k ∈ {1, . . . ,K}, the error of the approximation is given by

‖Ykb − Ŷlocal
kb ‖F = ρr(Ykb). Let rmin = rmin(α, β) and rmax = rmax(α, β) > 0 be the minimum

and maximum rank estimates in when running FPCA. The result follows from

ρrmax(α,β)(Ykb) ≤ Yerr ≤ ρrmin(α,β)(Ykb).

Where Yerr = ‖Ykb − Ŷlocal
kb ‖F

14

15

Furthermore, we can express the global bound in a different form which can give us a more descriptive
overall bound. To this end we know that for each local worker its ‖ · ‖F accumulated error any given
time is bounded by the ratio of the summation of its singular values.

Lemma 3. Let ‖ · ‖MF ∈ {1, . . . ,M} be the error accumulated for each of the M clients at block τ ;

then, after merging operations the global error will be
∑M

i=1 EYτ

M .

Proof. By Equation (15) we know that the error is deterministically bounded for each of the M
clients at any given block τ . Further, we also know that the merging as in (Algorithm 2) is able
to merge the target subspaces with minimal error and thus at any given block τ we can claim that∑M

i=1 EYτ

M +cm where cm is a small constant depicting the error accumulated during the merging
procedure of the subspaces, thus when asymptotically eliminating the constant factors the final error

is
∑M

i=1 EYτ

M .

B Privacy Preserving Properties of Federated PCA

In this section we prove Lemma 2, which summarises the differential privacy properties of our method.
The arguments are based on the proofs given by [8]. Lemma 4 proves the first part of Lemma 2 by
extending MOD-SuLQ to the case of non-symmetric noise matrices. The second part of Lemma 2 is
a direct corollary of Lemma 4. The third part follows directly from Lemmas 8 and 9.

Lemma 4 (Differential privacy). Let X ∈ R
d×n be a dataset with orthonormal columns and

A = 1
nXXT . Let

ω(ε, δ, d, n) =
4d

εn

√
2 log

(
d2

δ
√
2π

)
+

√
2√
εn

, (17)

and Nε,δ,d,n ∈ R
d×d be a non-symmetric random Gaussian matrix with i.i.d. entries drawn from

N (0, ω2). Then, the principal components of 1
nXXT +Nε,δ,d,n are (ε, δ)-differentially private.

Proof. Let N, N̂ ∈ R
d×d be two random matrices such that Ni,j and N̂i,j are i.i.d. random variables

drawn from N (0, ω2). Let D = {xi : i ∈ [n]} ⊂ R
d be a dataset and let D̂ = D ∪ {x̂n} \ {xn}.

Form the matrices

X = [x1, . . . ,xn−1,xn] (18)

X̂ = [x1, . . . ,xn−1, x̂n]. (19)

Let Y = [x1, . . .xn−1]. Then, the covariance matrices for these datasets are

A =
1

n
[YYT + xnx

T
n] (20)

Â =
1

n
[YYT + x̂nx̂

T
n]. (21)

Now, let G = A+B and Ĝ = Â+B̂ and consider the log-ratio of their densities at point H ∈ R
d×d.

log
fG(H)

f
Ĝ
(H)

=
1

2ω2

d∑
i,j=1

(
−(Hi,j −Ai,j)

2 + (Hi,j − Âi,j)
2
)

=
1

2ω2

d∑
i,j=1

(
2

n
(Ai,j −Hi,j)(x̂nx̂

T
n − xnx

T
n)i,j +

1

n2
(x̂nx̂

T
n − xnx

T
n)

2
i,j

)

=
1

2ω2

d∑
i,j=1

(
2

n
(Ai,j −Hi,j)(x̂n,ix̂n,j − xn,ixn,j) +

1

n2
(x̂n,ix̂n,j − xn,ixn,j)

2

)
.

(22)

15

16

Note that if x,y ∈ R
d are such that ‖x‖ = ‖y‖ = 1 are unit vectors, then

d∑
i,j=1

(xixj − yiyj)
2 ≤ 4. (23)

Moreover,

d∑
i,j=1

(x̂n,ix̂n,j − xn,ixn,j) ≤
d∑

i,j=1

|x̂n,ix̂n,j |+
d∑

i,j=1

|xn,ixn,j | (24)

≤ 2 max
z:‖z‖≤1

d∑
i,j=1

zizj (25)

≤ 2 max
z:‖z‖≤1

‖z‖21 (26)

≤ 2 max
z:‖z‖≤1

(
√
d‖z‖2)2 (27)

≤ 2d. (28)

Using these observations to bound (22), and using the fact that for any γ ∈ R the events {∀ i, j :
Ni,j ≤ γ} and {∃ i, j : Ni,j > γ} are complementary, we obtain that for any measurable set S of
matrices,

P(G ∈ S) ≤ exp

(
1

2ω2

(
4

n
dγ +

4

n2

))
+ P(∃ i, j : Ni,j > γ). (29)

Moreover, if γ > ω, we can use the union bound with a Gaussian tail bound to obtain

δ := P(∃ i, j : Ni,j > γ) = P

⎛⎝ d⋃
i,j=1

{Ni,j > γ}
⎞⎠

≤
d∑

i,j=1

P (Ni,j > γ)

≤
d∑

i,j=1

(
1√
2π

e−
γ2

2ω2

)

=
d2√
2π

e−
γ2

2ω2 (30)

Now, solving for γ in (30) we obtain,

γ = ω

√
2 log

(
d2

δ
√
2π

)
(31)

Substituting (31) in (29) we can give an expression for (ε, δ)-differential privacy by letting

ε =
1

2ω2

(
4

n
d

(
ω

√
2 log

(
d2

δ
√
2π

))
+

4

n2

)
. (32)

This yields a quadratic equation on ω, which we can rewrite as

2εω2 − 4

n
d

(
ω

√
2 log

(
d2

δ
√
2π

))
ω − 4

n2
= 0. (33)

16

17

Using the quadratic formula to solve for ω in (33) yields,

ω =
2d

εn

√
2 log

(
d2

δ
√
2π

)
± 2

εn

√
2d2 log

(
d2

δ
√
2π

)
+

ε

2

≤ 2d

εn

√
2 log

(
d2

δ
√
2π

)
+

2

εn

(√
2d2 log

(
d2

δ
√
2π

)
+

√
ε

2

)

=
4d

εn

√
2 log

(
d2

δ
√
2π

)
+

√
2√
εn

.

To prove the utility bound in Lemma 8 of Streaming MOD-SuLQ, we will Lemmas 5, 6, and 7.

Lemma 5 (Packing result [8]). For φ ∈ [(2πd)−1/2, 1), there exists a set C ⊂ S
d−1 with

|C| = 1

8
exp

(
(d− 1) log

1√
1− φ2

)
(34)

and such that |〈μ,v〉| ≤ φ for all μ,v ∈ C.

Lemma 6 (Kullback-Leibler for Gaussian random variables). Let Σ be a positive definite matrix and
let f and g denote, respectively, the densities N (a,Σ) and N (b,Σ). Then,

KL(f || g) = 1

2
(a− b)TΣ(a− b). (35)

Proof. The proof follows directly by using the definition of the Kullback-Leibler divergence and
simplifying.

Lemma 7 (Fano’s inequality [53]). LetR be a set and Θ be a parameter space with a pseudo-metric
d(·). Let F be a set of r densities {f1, . . . , fr} onR corresponding to parameter values {θ1, . . . , θr}
in Θ. Let X have a distribution f ∈ F with corresponding parameter θ and let θ̂(X) be an estimate
of θ. If for all i, j, d(θi, θj) ≥ τ and KL(fi || fj) ≥ γ, then

max
j

Ej

[
d(θ̂, θj)

]
≥ τ

2

(
1− γ + log 2

log r

)
. (36)

We are now ready to give a bound on the utility for Streaming MOD-SuLQ. We note that the proof
for Lemma 8 is identical as the one given in [8] except for a few equations where the dimension

of the object considered changes from
d(d+1)

2 to d2. We also note that while the utility bound has
the same functional form, it is not identical to the one given in [8] since it depends on the value of
ω = ω(ε, δ, d, n) given in Lemma 2.

Lemma 8 (Utility bounds). Let d, n ∈ N and ε > 0 be given and let ω be given as in Lemma 2, so
that the output of Streaming MOD-SuLQ is (ε, δ) differentially private for all datasets X ∈ R

d×n.
Then, there exists a dataset with n elements such that if v̂1 denotes the output of the Streaming
MOD-SuLQ and v1 is the top eigenvector of the empirical covariance matrix of the dataset, the
expected correlation 〈v1, v̂1〉 is upper bounded,

E [|〈v1, v̂1〉|] ≤ min
φ∈Φ

⎛⎜⎝1− 1− φ

4

⎛⎝1− 1/ω2 + log 2

(d− 1) log 1√
1−φ2

− log 8

⎞⎠2
⎞⎟⎠ (37)

where

Φ ∈
[
max

{
1√
2πd

,

√
1− exp

(
−2 log(8d)

d− 1

)
,

√
1− exp

(
−2/ω2 + log 256

d− 1

)}]
. (38)

17

18

Proof. Let C be an orthonormal basis in R
d. Then, |C| = d, so solving for φ in (34) yields

φ =

√
1− exp

(
−2 log(8d)

d− 1

)
. (39)

For any unit vector μ let A(μ) = μμ
T + N where N is a symmetric random matrix such that

{Ni,j : i ≤ i ≤ j ≤ d} are i.i.d. N (0, ω2) and ω2 is the noise variance used in the Streaming
MOD-SuLQ algorithm. The matrix A(μ) can be thought of as a jointly Gaussian random vector on
d2 variables. The mean and covariance of this vector is

E[μ] = (μ2
1, . . . ,μ

2
d,μ1μ2, . . . ,μd−1μd,μ2μ1, . . . ,μdμd−1) ∈ R

d2

, (40)

Cov[μ] = ω2Id2×d2 ∈ R
d2×d2

. (41)

For μ,ν ∈ C, the divergence can be calculated using Lemma 6 yielding

KL(fμ || fν) ≤ 1

ω2
. (42)

For any two vectors μ,ν ∈ C, we have that |〈μ,ν〉| ≤ φ, so that −φ ≤ −〈μ,ν〉. Therefore,

‖μ− ν‖2 = 〈μ− ν,μ− ν〉 (43)

= ‖μ‖2 + ‖ν‖2 − 2〈μ,ν〉 (44)

= 2(1− 〈μ,ν〉) (45)

≥ 2(1− φ). (46)

From (42) and (46), the set C satisfies the conditions of Lemma 7 with F = {fμ : μ ∈ C}, r = K

and τ =
√
2(1− φ), and γ = 1/ω2. Hence, this shows that for Streaming MOD-SuLQ,

max
μ∈C

Efμ [‖v̂ − μ‖] ≥
√

2(1− φ)

2

(
1− 1/ω2 + log 2

logK

)
(47)

As mentioned in [8] this bound is vacuous when the term inside the parentheses is negative which
imposes further conditions on φ. Setting K = 1/ω2 + log 2, we can solve to find another lower
bound on φ:

φ ≥
√
1− exp

(
−2/ω2 + log 256

d− 1

)
(48)

Using Jensen’s inequality on the left hand side of (47) yields

max
μ∈C

Efμ [2(1− |〈v̂,μ〉|)] ≥ (1− φ)

2

(
1− 1/ω2 + log 2

logK

)2

(49)

so there is a μ such that

Efμ [|〈v̂,μ〉|] ≤ 1− (1− φ)

4

(
1− 1/ω2 + log 2

logK

)2

. (50)

Now, consider the dataset D = [μ · · ·μ] ∈ R
d2×n. This dataset has covariance matrix equal to

μμ
T and has top eigenvector equal to v1 = μ. The output of the algorithm Streaming MOD-SuLQ

applied to D approximates μ, so satisfies (50). Minimising this equation over φ yields the required
result.

Lemma 9 (Sample complexity). For (ε, δ) and d ∈ N, there are constants C1 > 0 and C2 > 0 such
that with

n ≥ C1
d3/2

√
log(d/δ)

ε

(
1− C2

(
1− Efμ [|〈v̂,μ〉|])) , (51)

where μ is the first principal component of the dataset X ∈ R
d×n and v̂ is the first principal

component estimated by Streaming MOD-SULQ.

18

19

Proof. Using (50), and letting Efμ [|〈v̂,μ〉|] = ρ, we obtain,

2
√

1− ρ ≥ min
φ∈Φ

√
1− φ

⎛⎝1− 1/ω2 + log 2

(d− 1) log 1√
1−φ2

− log 8

⎞⎠ (52)

Picking φ so that the fraction in the right-hand side becomes 0.5, we obtain,

4
√
1− ρ ≥

√
1− φ. (53)

Moreover, as d, n→∞, this value of φ guarantee implies an asymptotic of the form

log
1√

1− φ2
∼ 2

ω2d
+ o(1). (54)

This implies that φ = Θ(ω−1d−1/2), and by (8) that ω � d2(εn)−2 log(d/δ). Therefore, there exists

C > 0 such that ω2 > Cd2(nε)−2 log(d/δ). Since φ = Θ(ω−1d−1/2) we have that for some D > 0

φ2 ≤ D
n2ε2

d3 log(d/δ)
. (55)

By (53) we get

(1− 16(1− ρ)) ≤ D
n2ε2

d3 log(d/δ)
(56)

Solving for n in (56) yields

n ≥ C1
d3/2

√
log(d/δ)

ε
(1− C2(1− ρ)), (57)

for some constants C1 and C2.

C Federated PCA Analysis

In this section we will present a detailed analysis of Federated-PCA in which we will describe the
merging process in detail as well as provide a detailed error analysis in the streaming and federated
setting that is based is based on the mathematical tools introduced in [26].

C.1 Asynchronous Independent Block based SVD

We begin our proof by proving Lemma 1 (Streaming partial SVD uniqueness) which applies in the
absence of perturbation masks and is the cornerstone of our federated scheme.

Proof. Let the reduced SVD r representation of each of the M nodes at time t be,

Yi
t =

r∑
j=1

ui
jσ

i
j(v

i
j)

T = Ûi
tΣ̂

i
t(V̂

i
t)

T , i = 1, 2, . . . ,M. (58)

We also know that each of the blocks Yi
t ∈ [M] can be at most of rank d. Note that in this instance,

the definition applies for only fully materialised matrices; however, substituting each block of Yt
i

with our local updates procedure as in Algorithm 3 then will generate an estimation of the reduced
SVD r of that particular Yt

i block with an error at most as in (12) subject to each update chunk being

in R
d×b with b ≥ min rank(Yi

t) ∀i ∈ [M].

Now, let the singular values of Yt be the positive square root of the eigenvalues of YtY
T
t , where as

defined previously Yt is the data seen so far from the M nodes; then, by using the previously defined
streaming block decomposition of a matrix Yt we have the following,

YtY
T
t =

M∑
i=1

Yi
t(Y

i
t)

T =
M∑
i=1

Ûi
tΣ̂

i
t(V̂t

i
)T (V̂i

t)(Σ̂
i
t)

T (Ûi
t)

T =
M∑
i=1

Ûi
tΣ̂

i
t(Σ̂

i
t)

T (Ui
t)

T (59)

19

C.2 Time Order Independence 20

Equivalently, the singular values of Zt are similarly defined as the square root of the eigenvalues of
ZtZ

T
t .

ZZT =

M∑
i=1

(Ûi
tΣ̂

i
t)(Û

i
tΣ̂

i
t)

T =

M∑
i=1

Ûi
tΣ̂

i
t(Σ̂

i
t)

T (Ûi
t)

T (60)

Thus YtY
T
t = ZtZ

T
t at any t, hence the singular values of matrix Zt must surely equal to those of

matrix Yt. Moreover, since the left singular vectors of both Yt and Zt will be also eigenvectors
of YtY

T
t and ZtZ

T
t , respectively; then the eigenspaces associated with each - possibly repeated -

eigenvalue will also be equal thus Ût = Û′tBt. The block diagonal unitary matrix Bt which has p
unitary blocks of size p× p for each repeated eigenvalue; this enables the singular vectors which are

associated with each repeated singular value to be rotated in the desired matrix representation Ût. In
case of different update chunk sizes per worker the result is unaffected as long as the requirement for
their size (b) mentioned above is kept and their rank r is the same.

C.2 Time Order Independence

Further, a natural extension to Lemma 1 which is pivotal to a successful federated scheme is the
ability to guarantee that our result will be the same regardless of the merging order in the case there
are no input perturbation masks.

Lemma 10 (Time independence). Let Y ∈ R
d×n. Then, if P ∈ R

n×n is a row permutation of the
identity. Then, in the absence of input-perturbation masks, FPCA(Y) = FPCA(YP).

Proof. If Y = UΣVT is the Singular Value Decomposition (SVD) of Y, then YP = UΣ
(
VTP

)
.

Since V′ = PTV is orthogonal, UΣ(V′)T is the SVD of YP. Hence, both Y and YP have the
same singular values and left principal subspaces.

Notably, by formally proving the above Lemmas we can now exploit the following important
properties: i) that we can create a block decomposition of Yt for every t without fully materialising
the block matrices while being able to obtain their SVDr incrementally, and ii) that the result will
hold regardless of the arrival order.

C.3 Subspace Merging

In order to expand the result of Lemmas 1 and 10 we must first present the full implementation
of Algorithm 4. This algorithm is a direct consequence of Lemma 1, with the addition of a forgetting
factor λ that only gives more weight to the newer subspace.

Algorithm 4: BasicMerge algorithm

Data: U1 ∈ R
d×r1 , first subspace

Σ1 ∈ R
r1×r1 , first subspace singular values

U2 ∈ R
d×r2 , second subspace

Σ2 ∈ R
r2×r2 , second subspace singular values

r ∈ [r], , the desired rank r
λ1 ∈ (0, 1), forgetting factor
λ2 ≥ 1, enhancing factor
Result: U′ ∈ R

d×r, merged subspace, Σ′ ∈ R
r×r, merged singular values

Function BasicMerge(U1, Σ1, U2, Σ2, λ1, λ2) is
[U′,Σ′, ˜]← SVDr([λ1U1Σ1, λ2U2Σ2])

end

C.3.1 Improving upon regular SVD

As per Lemma 1 we are able to use this algorithm in order to merge two subspaces with ease, however
there are a few things that we could improve in terms of speed. Recall, that in our particular care we

20

C.3 Subspace Merging 21

do not require VT , which is computed by default when using SVD; this incurs both computational
and memory overheads. We now show how we can do better in this regard.

We start by deriving an improved version for merging, shown Algorithm 5; notably, this algorithm
improves upon the basic merge (Algorithm 4) by exploiting the fact that the input subspaces are
already orthonormal. In this case, we show how we can transform the Algorithm 4 to Algorithm 5.
The key intuition comes from the fact that we can incrementally update U by using U ← QpUR.
To do this we need to first create a subspace basis which spans U1 and U2, namely span(Qp) =
span([U1,U2]). This is done by performing [Qp,Rp] = QR([λ1U1Σ1, λ2U2Σ2]) and use Rp to
perform an incremental update. Additionally, it is often the case that the subspaces spanned by U1

and U2 to intersect; in which case the rank of Q is less than the sum r1 and r2. Typically, practical
implementations of QR will permute R pushing the diagonal zeros only after all non-zeros which
preserves the intended diagonal shape in the upper left part of R. However, this behaviour has no
practical impact to our results; as in the event this occurs, Q is always permuted accordingly to reflect
this [49]. Continuing, we know that Qp is orthogonal but we are not finished yet since Rp is not
diagonal, so an extra SVD needs to be applied on it which yields the singular values in question
and the rotation that Qp requires to represent the new subspace basis. Unfortunately, even if this
improvement, this technique only yields a marginally better algorithm since the SVD has to now be
performed at a much smaller matrix, namely, Rp.

Algorithm 5: FasterMerge algorithm

Data: U1 ∈ R
d×r1 , first subspace

Σ1 ∈ R
r1×r1 , first subspace singular values

U2 ∈ R
d×r2 , second subspace

Σ2 ∈ R
r2×r2 , second subspace singular values

r ∈ [r], , the desired rank r
λ1 ∈ (0, 1), forgetting factor
λ2 ≥ 1, enhancing factor
Result: U′ ∈ R

d×r, merged subspace
Σ′ ∈ R

r×r, merged singular values
Function FasterMerge(U1, Σ1, U2, Σ2, λ1, λ2,r) is

[Qp,Rp]← QR(λ1U1Σ1 | λ2U2Σ2)
[UR,Σ

′, ˜]← SVDr(Rp)
U′ ← QpUR

end

Now we will derive our final merge algorithm by showing how Algorithm 5 can be further improved
when VT is not needed and we have knowledge that U1 and U2 are already orthonormal. This is

done by building a basis U′ for span((I−U1U1
T)U2) via the QR factorisation and then computing

the SVD decomposition of a matrix X such that

[U1Σ1,U2Σ2] = [U1,U
′]X. (61)

It is shown in [46, Chapter 3] in an analytical derivation that this yields an X of the form

X =

[
UT

1 U1Σ1 UT
1 U2Σ2

U′
T
U1 U′TU2Σ2

]
=

[
Σ1 UT

1 U2Σ2

0 RpΣ2

]
The same technique appears to have been independently rediscovered in [17] as the merging procedure
for each block is identical. The Algorithm 6 below shows the full implementation.

The algorithm shown above is the one of the essential components of our federated scheme, allowing
us to quickly merge incoming subspaces as they are propagated upwards. To illustrate the practical
benefits of the merging algorithm we conducted an experiment in order to evaluate if the algorithm
performs as expected. Concretely, we created synthetic data using Synth(1)d×n with d = 800 and
n ∈ {800, 1.6k, 2.4k, 3.2k, 4k}; then we split each dataset into two equal chunks each of which was
processed using Federated-PCA with a target rank of 100. Then we proceeded to merge the two
resulting subspaces with two different techniques, namely, with the Equation (2) and Algorithm 6

21

C.4 Federated Error Analysis 22

Algorithm 6: Merger [46, 17]

Merger(U1,Σ1,U2,Σ2)
Data:
r ∈ [r], rank estimate;

(U1,Σ1) ∈ R
d×r1 × R

r1×r1 , 1st subspace;

(U2,Σ2) ∈ R
d×r2 × R

r2×r2 , 2nd subspace;

Result: (U′,Σ′) ∈ R
d×r × R

r×r merged subspace;
Function Merger(U1, Σ1, U2, Σ2) is

Z← UT
1 U2;

[Q,R]← QR(U2 −U1Z);

[Ur,Σ
′,∼]← SVDr

([
Σ1 ZΣ2

0 RΣ2

])
;

U′ ← [U1,Q]Ur;

end

as well as find the offline subspace using traditionally SVD. We then show in Figure 5 the errors
incurred with respect to the offline SVD against the resulting merged subspaces and singular values
of the two techniques used, as well as their execution. We can clearly see that the resulting subspaces
are identical in all cases and that the error penalty in the singular values is minimal when compared
to eq. (2); as expected, we also observe that derived algorithm is faster while consuming less memory.
Critically speaking, the speed benefit is not significant in the single case as presented; however, these
benefits can be additive in the presence of thousands of merges that would likely occur in a federated
setting.

800 1600 2400 3200 4000
n

1.8

1.9

2

2.1

2.2

2.3

2.4

er
ro

r
(m

se
)

10-10

fast
svd

(a) U errors.

800 1600 2400 3200 4000
n

0

1

2

3

4

er
ro

r
(m

se
)

10-6

fast
svd

(b) Singular Value errors.

800 1600 2400 3200 4000
n

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

T
im

e
(s

)

fast
svd

(c) Execution time.

Figure 5: Illustration of the benefits of Algorithm 6, in of errors of subspace (fig. 5a), singular values
(fig. 5b), and its execution speed (fig. 5c).

C.4 Federated Error Analysis

In this section we will give a lower and a upper bound of our federated approach. This is also based
on the mathematical toolbox we previously used [26] but is adapted in the case of streaming block
matrices.

Lemma 11. Let Yi
t ∈ R

d×tMb, i = [M] for a any time t and a fixed update chunk size b. Further-

more, suppose matrix Yi
t at time t has block matrices defined as Yi

t =
[
Y1

t |Y2
t | · · · |YM

t

]
, and

Zt at the same time has blocks defined as Zt =
[
(Y1

t)r|(Y2
t)r| · · · |(YM

t)r
]
, where r ≤ d. Then,

‖(Zt)r −Yt‖F ≤ ‖(Z)r − Zt‖F + ‖Zt −Yt‖F ≤ 3‖(Yt)r −Yt‖F holds for all r ∈ [d].

Proof. We base our proof on an invariant at each time t the matrix Yt, although not kept in memory,
due to the approximation described in appendix A can be treated as such for the purposes of this
proof. Thus, we have the following:

‖(Zt)r −Yt‖F ≤ ‖(Zt)r − Zt‖F + ‖Zt −Yt‖F
≤ ‖(Yt)r − Zt‖F + ‖Zt −Yt‖F
≤ ‖(Yt)r −Yt‖F + 2‖Zt −Yt‖F.

We let (Yi
t)r ∈ R

d×tMb, i = 1, 2, . . . ,M denote the ith block of (Yt)r, we can see that

22

C.4 Federated Error Analysis 23

‖Zt −Yt‖2F =

M∑
i=1

‖(Yi
t)d −Yi

t‖2F ≤
M∑
i=1

‖(Yi
t)r −Yi

t‖2F = ‖(Yt)r −Yt‖2F.

Hence, if we combine these two estimates we complete our proof.

To bound the error of the federated algorithm, we use Lemma 11 to derive a lower and an upper bound
of the error. Suppose that we choose a r ≤ d which is a truncated version of Yt while also having the
depth equal to 1. We can improve over Lemma 11 in this particular setting by requiring no access on

the right singular vectors of any given block - e.g. the Vi
t

T
. Furthermore, it is possible to also show

that this method is stable with respect to (small) additive errors. We represent this mathematically
with a noise matrix Ψ.

Theorem 2. Let Yt ∈ R
d×tMb at time t has its blocks defined as Yi

t ∈ R
d×tMb, i = [M], so that

Yt =
[
Y1

t |Y2
t | · · · |YM

t

]
. Now, also let Zt =

[
(Y1

t)r
∣∣ (Y2

t)r
∣∣ · · · ∣∣ (YM

t)r

]
, Ψt ∈ R

d×tMb, and

Zt
′ = Zt +Ψt. Then, there exists a unitary matrix Bt such that∥∥∥(Zt

′
)
r
−YtBtt

∥∥∥
F
≤ 3

√
2‖(Yt)r −Yt‖F +

(
1 +

√
2
)
‖Ψt‖F

holds for all r ∈ [d].

Proof. Let Y′t =
[
Y1

t

∣∣ Y2
t

∣∣ · · · ∣∣ YM
t

]
. Note that Y′t = Yt by Lemma 1. Thus, there exists a

unitary matrix Bt
′′ such that Y′t = YtBt

′′. Using this fact in combination with the unitary invariance
of the Frobenius norm, one can now see that∥∥(Zt

′
)
r
−Y′t

∥∥
F

=
∥∥(Zt

′
)
r
−YtBt

′′
∥∥
F

=
∥∥∥(Zt

′
)
r
−YtBt

′
∥∥∥
F
=

∥∥∥(Zt
′
)
r
−YtBt

∥∥∥
F

for some (random) unitary matrices Bt
′ and Bt. Hence, it suffices to bound the norm of∥∥(Zt

′
)
r
−Y′t

∥∥
F

.

Having said that, we can now do∥∥(Zt
′
)
r
−Y′t

∥∥
F
≤ ∥∥(Zt

′
)
r
− Zt

′
∥∥
F
+

∥∥Zt
′ − Zt

∥∥
F
+ ‖Zt −Y′t‖F

=

√√√√ d∑
j=r+1

σ2
j (Zt +Ψt) + ‖Ψt‖F + ‖Zt −Y′t‖F

=

√√√√√� d−r
2 �∑

j=1

σ2
r+2j−1(Zt +Ψt) + σ2

r+2j(Zt +Ψt) + ‖Ψt‖F + ‖Zt −Y′t‖F

≤

√√√√√� d−r
2 �∑

j=1

(σr+j(Zt) + σj(Ψt))
2
+ (σr+j(Zt) + σj+1(Ψt))

2
+ ‖Ψt‖F + ‖Zt −Y′t‖F

the result follows from applying Weyl’s inequality in the first term [25].

By the application of the triangle inequality on the first term we now have the following

∥∥(Zt
′
)
r
−Y′t

∥∥
F
≤

√√√√ d∑
j=r+1

2σ2
j (Zt) +

√√√√ d∑
j=1

2σ2
j (Ψt) + ‖Ψt‖F + ‖Zt −Y′t‖F

≤
√
2 (‖(Zt)r − Zt‖F + ‖Zt −Y′t‖F) +

(
1 +

√
2
)
‖Ψt‖F.

Finally, Lemma 11 for bounding the first two terms concludes the proof if we note that ‖(Y′t)r −
Y′t‖F = ‖(Yt)r −Yt‖F.

23

C.4 Federated Error Analysis 24

Now, we introduce the final theorem which bounds the general error of Federated-PCA with respect
to the data matrix Yt and up to multiplication by a unitary matrix.

Theorem 3. Let Yt ∈ R
d×tMb and q ≥ 1. Then, Federated-PCA is guaranteed to recover an

Y
q+1,1
t ∈ R

d×tMb for any t such that
(
Y

q+1,1
t

)
r
= YtBt +Ψt, where Bt is a unitary matrix, and

‖Ψt‖F ≤
((

1 +
√
2
)q+1 − 1

)
‖(Yt)r −Yt‖F.

Proof. For the purposes of this proof we will refer to the approximate subspace result for Y
p+1,i
t

from the merging chunks as

Zt
p+1,i :=

[(
Zt

p,(i−1)tMb+1
)
r

∣∣∣ · · · ∣∣∣ (Zt
p,itMb

)
r

]
,

for p ∈ [q], and i ∈ [M/(tMb)p]. Which, as previously proved is equivalent to Yt, for any t and up
to a unitary transform. Moreover, Yt will refer to the original - and, potentially full rank - matrix with

block components defined as Yt =
[
Y1

t |Y2
t | · · · |YM

t

]
, where M = (tMb)q. Additionally, Y

p,i
t

will refer to the respective uncorrupted block part of the original matrix Yt whose values correspond

to the ones of Zt
p,i. 3

Hence, Yt =
[
Y

p,1
t |Yp,2

t | · · · |Yp,M/(tMb)(p−1)

t

]
holds for all p ∈ [q + 1], in which

Y
p+1,i
t :=

[
Y

p,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Yp,itMb
t

]
for all p ∈ [q], and i ∈ [M/(tMb)p]. For p = 1 we have Zt

1,i = Yi
t = Y

1,i
t for i ∈ [M] by

definition. Our target is to bound
(
Zt

q+1,1
)
d

matrix with respect to the original matrix Yt, which
can be done by induction on the level p. Concretely, we have to formally prove the following for all

p ∈ [q + 1], and i ∈ [M/(tMb)(p−1)]

1.
(
Zt

p,i
)
r
= Y

p,i
t W p,i +Ψp,i

t , where

2. Bt
p,i is always a unitary matrix, and

3. ‖Ψp,i
t ‖F ≤

((
1 +

√
2
)p − 1

)∥∥∥(Yp,i
t)d −Y

p,i
t

∥∥∥
F

.

Notably, requirements 1 − 3 are always satisfied when p = 1 since Zt
1,i = Yi

t = Y
1,i
t for all

i ∈ [M] by definition. Hence, we can claim that a unitary matrix Bt
1,i for all i ∈ [M] satisfying

(
Zt

1,i
)
d
=

(
Y

1,i
t

)
r
=

(
Y

1,i
t

)
r
Zt

1,i = Y
1,i
t Bt

1,i +
((

Y
1,i
t

)
r
−Y

1,i
t

)
Bt

1,i,

where Ψ1,i :=
((

Y
1,i
t

)
r
−Y

1,i
t

)
W 1,i has

‖Ψ1,i
t ‖F =

∥∥∥(Y1,i
t

)
r
−Y

1,i
t

∥∥∥
F
≤
√
2
∥∥∥(Y1,i

t

)
r
−Y

1,i
t

∥∥∥
F
. (62)

Moreover, let’s assume that conditions 1− 3 hold for some p ∈ [q]. In which case, we can see see
from condition 1 that

3Meaning, Zt

p,i is used to estimate the approximate singular values and left singular vectors of Y
p,i
t for all

p ∈ [q + 1], and i ∈ [M/(tMb)p−1]

24

C.4 Federated Error Analysis 25

Zt
p+1,i :=

[(
Zt

p,(i−1)tMb+1
)
r

∣∣∣ · · · ∣∣∣ (Zt
p,itMb

)
r

]
=

[
Y

p,(i−1)tMb+1
t Bt

p,(i−1)tMb+1 +Ψ
p,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Yp,itMb
t Bt

p,itMb +Ψp,itMb
t

]
=

[
Y

p,(i−1)tMb+1
t Bt

p,(i−1)tMb+1
∣∣∣ · · · ∣∣∣ Yp,itMb

t Bt
p,itMb

]
+

[
Ψ

p,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Ψp,itMb
t

]
=

[
Y

p,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Yp,itMb
t

]
B̃t + Ψ̃t,

where Ψ̃t :=
[
Ψ

p,(i−1)tMb+1
t

∣∣∣ · · · ∣∣∣ Ψp,itMb)
t

]
, and

B̃t :==

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Bt

p,(i−1)tMb+1 0 0 0

0 Bt
p,(i−1)tMb+2 0 0

0 0
. . . 0

0 0 0 Bt
p,i(tMb)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Of note is that B̃t is always unitary due to its diagonal blocks all being unitary by condition 2 (and

hence, by construction). Hence, we can claim that Zt
p+1,i = Y

p+1,i
t B̃t + Ψ̃t.

Following this, we can now bound

∥∥∥(Zt
p+1,i

)
r
−Y

p+1,i
t B̃t

∥∥∥
F

by the use of similar argument to

that we employed during the the proof of Theorem 2.

∥∥∥(Zt
p+1,i

)
r
−Y

p+1,i
t B̃t

∥∥∥
F
≤ ∥∥(Zt

p+1,i
)
r
− Zt

p+1,i
∥∥
F
+

∥∥∥Zt
p+1,i −Y

p+1,i
t B̃t

∥∥∥
F

=

√√√√ d∑
j=r+1

σ2
j

(
Y

p+1,i
t B̃t + Ψ̃t

)
+ ‖Ψ̃t‖F

≤
√√√√ d∑

j=r+1

2σ2
j

(
Y

p+1,i
t B̃t

)
+

√√√√ d∑
j=1

2σ2
j (Ψ̃t) + ‖Ψ̃t‖F

=
√
2
∥∥∥Yp+1,i

t −
(
Y

p+1,i
t

)
r

∥∥∥
F
+

(
1 +

√
2
)
‖Ψ̃t‖F. (63)

Appealing to condition 3 in order to bound ‖Ψ̃t‖F we obtain

‖Ψ̃t‖2F =

tMb∑
j=1

‖Ψp,(i−1)tMb+j
t ‖2F ≤

((
1 +

√
2
)p

− 1
)2 tMb∑

j=1

∥∥∥(Yp,(i−1)tMb+j
t)r −Y

p,(i−1)tMb+j
t

∥∥∥2

F

≤
((

1 +
√
2
)p

− 1
)2 tMb∑

j=1

∥∥∥(Yp+1,i
t)jd −Y

p,(i−1)n+j
t

∥∥∥2

F
,

where (Yp+1,i
t)jr denotes the block of (Yp+1,i

t)d corresponding to Y
p,(i−1)n+j
t for j ∈ [tMb].

Hence,

‖Ψ̃t‖2F ≤
((

1 +
√
2
)p

− 1
)2 tMb∑

j=1

∥∥∥(Yp+1,i
t)jd −Y

p,(i−1)tMb+j
t

∥∥∥2

F

=
((

1 +
√
2
)p

− 1
)2 ∥∥∥(Yp+1,i

t)r −Y
p+1,i
t

∥∥∥2

F
. (64)

25

26

By using both (63) and (64) we can claim that

∥∥∥(Zt
p+1,i

)
r
−Y

p+1,i
t B̃t

∥∥∥
F
≤

[√
2 + (1 +

√
2)

((
1 +

√
2
)p

− 1
)] ∥∥∥(Yp+1,i

t

)
r
−Y

p+1,i
t

∥∥∥
F

=

((
1 +

√
2
)p+1

− 1

)∥∥∥(Yp+1,i
t

)
r
−Y

p+1,i
t

∥∥∥
F
. (65)

In the above, of note is that

∥∥∥(Zt
p+1,i

)
r
−Y

p+1,i
t B̃t

∥∥∥
F
=

∥∥∥(Zt
p+1,i

)
r
−Y

p+1,i
t Bt

p+1,i
∥∥∥
F

where

Bt
p+1,i is always unitary. Hence, we can see that conditions 1 - 3 hold at any t and any p+ 1 with

Ψp+1,i
t :=

(
Zt

p+1,i
)
r
−Y

p+1,i
t Bt

p+1,i.

Theorem 3 proves that at any given time t, Federated-PCA will accurately compute low rank

approximations Yt of the data seen so up to time t so long as the depth of the tree is relatively small.
This is a valid assumption in our setting since we expect federated deployments to be shallow and
have a large fanout. That is, we expect that the depth of the tree will be low and that many nodes will
be using the same aggregator for their merging procedures. It is also worth mentioning that the proof
of Theorem 3 can tolerate small additive noise (e.g. round-off and approximation errors) in the input
matrix Yt at time t. Finally, we fully expect that, at any t, the resulting error will be no higher than
min rank(Yi

t) ∀i ∈ [M] and no lower than max rank(Yi
t) ∀i ∈ [M]

D Further Evaluation Details

In addition to the traditional MNIST results presented in the main paper, we further evaluate FPCA
against other competing methods which show that it performs favourably both in terms of accuracy
and time when using synthetic and real datasets.

D.1 Synthetic Datasets

For the tests on synthetic datasets, the vectors {yt}τt=1 are drawn independently from a zero-mean
Gaussian distribution with the covariance matrix Ξ = SΛST , where S ∈ O(d) is a generic basis
obtained by orthogonalising a standard random Gaussian matrix. The entries of the diagonal matrix
Λ ∈ R

d×d (the eigenvalues of the covariance matrix Ξ) are selected according to the power law,
namely, λi = i−α, for a positive α. To be more succinct, wherever possible we employ MATLAB’s
notation for specifying the value ranges in this section.

To assess the performance of Federated-PCA, we let Yt = [y1, · · · ,yt] ∈ R
d×t be the data

received by time t and ŶFPCA
t,r be the output of FPCA at time t. 4 Then, the error incurred by FPCA

is
1

t
‖Yt − ŶFPCA

t,r ‖2F , (66)

Recall, that the above error is always larger than the residual of Yt, namely,

‖Yt − ŶFPCA
t,r ‖2F ≥ ‖Yt −Yt,r‖2F = ρ2r(Yt). (67)

In the expression above, Yt,r = SVDr(Yt) is a rank-r truncated SVD of Yt and ρ2r(Yt) is the
corresponding residual.

Additionally, we compare Federated-PCA against GROUSE [4], FD [11], PM [40] and a version of
PAST [43, 52]. Interestingly and contrary to FPCA, the aforementioned algorithms are only able
to estimate the principal components of the data and not their projected data on-the-fly. Although,
it has to noted that in this setup we are only interested in the resulting subspace U along with its
singular values Σ but is worth mentioning that the projected data, if desired, can be kept as well.

4Recall, since block-based algorithms like Federated-PCA, do not update their estimate after receiving
feature vector but per each block for convenience in with respect to the evaluation against other algorithms
(which might have different block sizes or singular updates), we properly interpolate their outputs over time.

26

D.1 Synthetic Datasets 27

More specifically, let Ŝg
t,r ∈ G(d, r) be the span of the output of GROUSE, with the outputs of the

other algorithms defined similarly. Then, these algorithms incur errors

1

t
‖Yt −PŜv

t,r
Yt‖2F , v ∈ g, f, p,FPCA,

where we have used the notation PA ∈ R
d×d to denote the orthogonal projection onto the subspace

A. Even though robust FD [33] improves over FD in the quality of matrix sketching, since the
subspaces produced by FD and robust FD coincide, there is no need here for computing a separate
error for robust FD.

Throughout our synthetic dataset experiments we have used an ambient dimension d = 400, and for
each a ∈ (0.001, 0.1, 0.5, 1, 2, 3) generated N = 4000 feature vectors in R

d using the method above.

This results in a set of with four datasets of size R
d×N . Furthermore, in our experiments we used a

block size of b = 50 for FPCA, while for PM we chose b = d. FD & GROUSE perform singular
updates and do not need a block-size value. Additionally, the step size for GROUSE was set to 2 and
the total sketch size for FD was set 2r. In all cases, unless otherwise noted in the respective graphs
the starting rank for all methods in the synthetic dataset experiments was set to r = 10.

We evaluated our algorithm using the aforementioned error metrics on a set of datasets generated as
described above. The results for the different a values are shown in Figure 7, which shows FPCA can
achieve an error that is significantly smaller than SP while maintaining a small number of principal
components throughout the evolution of the algorithms in the absence of a forgetting factor λ. When
a forgetting factor is used, as is shown in 6 then the performance of the two methods is similar.
This figure was produced on pathological datasets generated with an adversarial spectrum. It can
be seen that in SPIRIT the need for PC’s increases dramatically for no apparent reason, whereas
Federated-PCA behaves favourably.

27

D.1 Synthetic Datasets 28

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

5

10

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.001

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.6

0.7

0.8

0.9

1

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.001

SP
F-PCA

(a) α = 0.001.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

5

10

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.1

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.5

1

1.5

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.1

SP
F-PCA

(b) α = 0.1.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

2

4

6

8

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.5

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.2

0.3

0.4

0.5

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.5

SP
F-PCA

(c) α = 0.5.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

2

4

6

8

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 1

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.05

0.1

0.15

0.2

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 1

SP
F-PCA

(d) α = 1.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

2

4

6

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 2

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.01

0.02

0.03

0.04

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 2

SP
F-PCA

(e) α = 2.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

1

2

3

4

5

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 3

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.01

0.02

0.03

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 3

SP
F-PCA

(f) α = 3.

Figure 6: Performance measurements across the spectrum (when using forgetting factor λ = 0.9).

Additionally, in order to bound our algorithm in terms of the expected error, we used a fixed rank
version with a low and high bound which fixed its rank value r to the lowest and highest estimated
r-rank during its normal execution. We fully expect the incurred error of our adaptive scheme to fall
within these bounds. On the other hand, Figure 6 shows that a drastic performance improvement
occurs when using an exponential forgetting factor for SPIRIT with value λ = 0.9, but the generated
subspace is of inferior quality when compared to the one produced by FPCA.

28

D.1 Synthetic Datasets 29

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

50

100

150

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.001

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.4

0.6

0.8

1

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.001

SP
F-PCA

(a) α = 0.001.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

50

100

150

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.1

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0.5

1

1.5

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.1

SP
F-PCA

(b) α = 0.1.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

50

100

150

200

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 0.5

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.1

0.2

0.3

0.4

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 0.5

SP
F-PCA

(c) α = 0.5.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

50

100

150

200

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 1

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.1

0.2

0.3

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 1

SP
F-PCA

(d) α = 1.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

5

10

15

20

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 2

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.01

0.02

0.03

0.04

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 2

SP
F-PCA

(e) α = 2.

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

1

2

3

4

5

P
C

 c
ou

nt

PCs evolution over T (4000) with 400 feats for alpha: 3

SP
F-PCA

0 500 1000 1500 2000 2500 3000 3500 4000
time ticks

0

0.01

0.02

0.03

er
ro

r
(f

ro
)

Fro errs over T (4000) for alpha: 3

SP
F-PCA

(f) α = 3.

Figure 7: Pathological examples for adversarial Spectrums.

Figures 8a and 8b show the results of our experiments on synthetic data Synth(α)d×n ⊂ R
d×n

with (d, n) = (400, 4000) generated as described above. In the experiments, we let λ be the
forgetting factor of SP. Figure 6 compares FPCA with SP when (α, λ) = (1, 0.9) and Figure 7 when
(α, λ) = (2, 1). While Federated-PCA exhibits relative stability in both cases with respect to the
incurred || · ||F error, SP exhibits a monotonic increase in the number of principal components
estimated, in most cases, when λ = 1. This behaviour is replicated in Figures 8a and 8b where
RMSE subspace error is computed across the evaluated methods; thus, we can see while SP has better
performance when λ = 1 the number of principal components kept in most cases is unusually high.

29

D.2 Real Datasets 30

0.001 0.1 0.5 1 2 3
-25

-20

-15

-10

-5

0

er
ro

r
(lo

g(
rm

se
))

SP
PM
FD
GROUSE
F-PCA

(a) λ = 0.9

0.001 0.1 0.5 1 2 3
-30

-20

-10

0

er
ro

r
(lo

g(
rm

se
))

SP
PM
FD
GROUSE
F-PCA

(b) λ = 1

Figure 8: Resulting subspace U comparison across different spectrums generated using different α
values.

D.2 Real Datasets

To further evaluate our method against real datasets we also report in addition to the final subspace
errors the Frobenious norm errors over time for all datasets and methods we used in the main paper.
Namely, we used one that contains light, volt, and temperature readings gathered over a significant
period of time, each of which exhibiting different noteworthy characteristics5. These datasets are
used in addition to the MNIST and Wine quality datasets discussed in the main paper. As with the
synthetic datasets, across all real dataset experiments we used an ambient dimension d and N equal
to the dimensions of each dataset. For the configuration parameters we elected to use a block size
of b = 50 for FPCA and b = d for PM. The step size for GROUSE was again set to 2 and the
total sketch size for FD equal to 2r. Additionally, we used the same bounding technique as with the
synthetic datasets to bound the error of FPCA using a fixed r with lowest and highest estimation of
the r-rank and note that we fully expect FPCA to fall again within these bounds. Note, that most
reported errors are logarithmic; this was done in order for better readability and to be able to fit in the
same plot most methods - of course, this is also reflected on the y-axis label as well. We elected to do
this as a number of methods, had errors orders of magnitude higher which posed a challenge when
trying to plot them in the same figure.

D.2.1 Motes datasets

In this we elaborate on the findings with respect to the Motes dataset; below we present each of the
measurements included along with discussion on the findings.

Humidity readings sensor node dataset evaluation. Firstly, we evaluate against the motes dataset
which has an ambient dimension d = 48 and is comprised out of N = 7712 total feature vectors thus
its total size being R

48×7712. This dataset is highly periodic in nature and has a larger lower/higher
value deltas when compared to the other datasets. The initial rank used for all algorithms was r = 10.
The errors are plotted in logarithmic scale and can be seen in Figure 9a and we can clearly see
that FPCA outperforms the competing algorithms while being within the expected FPCA(low) &
FPCA(high) bounds.

Light readings sensor node dataset evaluation. Secondly, we evaluate against a motes dataset
that has an ambient dimension d = 48 and is comprised out of N = 7712 feature vectors thus
making its total size R

48×7712. It contains mote light readings can be characterised as a much more
volatile dataset when compared to the Humidity one as it contains much more frequent and rapid
value changes while also having the highest value delta of all mote datasets evaluated. Again, as with
Humidity dataset we used an initial seed rank r = 10 while keeping the rest of the parameters as
described above, the errors over time for all algorithms is shown in Figure 9d plotted logarithmic
scale. As before, FPCA outperforms the other algorithms while being again within the expected
FPCA(low) & FPCA(high) bounds.

5Source of data: https://www.cs.cmu.edu/afs/cs/project/spirit-1/www/data/Motes.zip

30

D.2 Real Datasets 31

Temperature readings sensor node dataset evaluation. The third motes dataset we evaluate
contains temperature readings from the mote sensors and has an ambient dimension d = 56 containing
N = 7712 feature vectors thus making its total size R

56×7712. Like the humidity dataset the
temperature readings exhibit periodicity in their value change and rarely have spikes. As previously
we used a seed rank of r = 20 and the rest of the parameters as described in the synthetic comparison
above, the errors over time for all algorithms is shown in Figure 9b plotted in logarithmic scale. It
is again evident that FPCA outperforms the other algorithms while being within the FPCA(low) &
FPCA(high) bounds.

Voltage readings sensor node dataset evaluation. Finally, the fourth and final motes dataset we
consider has an ambient dimension of d = 46 contains N = 7712 feature vectors thus making its
size R

46×7712. Similar to the Light dataset this is an contains very frequent value changes, has large
value delta which can be expected during operation of the nodes due to various reasons (one being
duty cycling). As with the previous datasets we use a seed rank of r = 10 and leave the rest of
the parameters as described previously. Finally, the errors over time for all algorithms is shown
in Figure 9c and are plotted in logarithmic scale. As expected, Federated-PCA here outperforms the
competing algorithms while being within the required error bounds.

D.2.2 MNIST

To evaluate more concretely the performance of our algorithm in a streaming setting and how the
errors evolve over time rather than just reporting the result we plot the logarithm of the frobenious
norm error over time while using the MNIST dataset used in the main manuscript. From our results
as can be seen from Figure 9e Federated-PCA consistently outperforms competing methods and
exhibits state of the art performance throughout.

D.2.3 Wine

The final real dataset we consider to evaluate and plot the evolving errors is the (red) Wine quality
dataset, in which we also used in the main manuscript albeit, as with MNIST, we only reported the
resulting subspace quality error. Again, as we can see from Figure 9f Federated-PCA performs
again remarkably, besting all other methods in this test as well.

D.2.4 Real dataset evaluation remarks

One strength of our algorithm is that it has the flexibility of not having its incremental updates to be
bounded by the ambient dimension d - i.e. its merges. This is especially true when operating on a
memory limited scenario as the minimum number of feature vectors that need to be kept has to be a
multiple of the ambient dimension d in order to provide their theoretical guarantees (such as in [39]).
Moreover, in the case of having an adversarial spectrum (e.g. α > 1), energy thresholding can quickly
overestimates the number of required principal components, unless a forgetting factor is used, but at
the cost of approximation quality and robustness as it can be seen through our experiments. Notably,
in a number of runs SP ended up with linearly dependent columns in the generated subspace and
failed to complete. This is an inherent limitation of Gram-Schmidt orthonormalisation procedure used
in the reference implementation and substituting it with a more robust one (such as QR) decreased its
efficiency throughout our experiments.

31

D.2 Real Datasets 32

0 1000 2000 3000 4000 5000 6000 7000 8000
time ticks

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA

F-PCA
lo

F-PCA
hi

PM
GROUSE

(a) Humidity.

0 1000 2000 3000 4000 5000 6000 7000 8000
time ticks

0

2

4

6

8

10

12

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA
F-PCA

lo

F-PCA
hi

PM
GROUSE

(b) Temperature.

0 1000 2000 3000 4000 5000 6000 7000 8000
time ticks

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA

F-PCA
lo

F-PCA
hi

PM
GROUSE

(c) Volt.

0 1000 2000 3000 4000 5000 6000 7000 8000
time ticks

4

6

8

10

12

14

16

18

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA
F-PCA

lo

F-PCA
hi

PM
GROUSE

(d) Light.

0 2000 4000 6000 8000 10000
time ticks

14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA
F-PCA

lo

F-PCA
hi

PM
GROUSE

(e) MNIST.

0 200 400 600 800 1000 1200 1400 1600
time ticks

-5

0

5

10

er
ro

r
(lo

g(
fr

o)
)

SP
F-PCA
F-PCA

lo

F-PCA
hi

PM
GROUSE

(f) (red) Wine Quality.

Figure 9: Comparisons against the Motes dataset containing Humidity (fig. 9a), Temperature (fig. 9b),
Volt (fig. 9c), and Light (fig. 9d) datasets with respect to the Frobenious norm error over time; further,
we compare the same error over time for the MNIST (fig. 9e) and (red) Wine quality (fig. 9f) datasets.
We compare against SPIRIT (SP), FPCA, non-adaptive FPCA (low/high bounds), PM, & GROUSE;
Frequent directions was excluded due to exploding errors.

32

D.3 Differential Privacy 33

D.3 Differential Privacy

Due to spacing limitation we refrained from showing the projections using a variety of differential
privacy budgets for the evaluated datasets; in this section we will show how the projections behave for
two additional DP budgets, namely for: ε ∈ {0.6, 1} and δ = 0.1 for both datasets. The projections
for MNIST can be seen in Figure 10; the quality of the projections produced by Federated-PCA
appear to be closer to the offline ones Figure 10a than the ones produced by MOD-SuLQ for both
DP budgets considered.

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
1st PC

-1500

-1000

-500

0

500

1000

1500

2000

2n
d

P
C

(a) Offline.

0 500 1000 1500 2000 2500 3000 3500
1st PC

-2000

-1500

-1000

-500

0

500

1000

1500

2n
d

P
C

(b) FPCA (with masks), (ε, δ) = (0.6, 0.1).

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
1st PC

-2000

-1500

-1000

-500

0

500

1000

1500

2n
d

P
C

(c) MOD-SuLQ, (ε, δ) = (0.6, 0.1).

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
1st PC

-1500

-1000

-500

0

500

1000

1500

2000

2n
d

P
C

(d) FPCA (with masks), (ε, δ) = (1, 0.1).

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
1st PC

-2000

-1500

-1000

-500

0

500

1000

1500

2n
d

P
C

(e) MOD-SuLQ, (ε, δ) = (1, 0.1).

Figure 10: MNIST projections using different differential privacy budgets, at the top (fig. 10a) is the
full rank PCA while on the left column is Federated-PCA with perturbation masks and on the right
column MOD-SuLQ using DP budget of ε ∈ {0.6, 1} and δ = 0.1 while starting from a recovery
rank of 6. Note here that Federated-PCA exhibits remarkable performance producing higher quality
projections than MOD-SuLQ in both cases.

However, on the Wine quality dataset projections seen in Figure 11 it seems that MOD-SuLQ can
produce projection that are closer to the offline ones than Federated-PCA but not too far apart.

33

D.3 Differential Privacy 34

Notably, this can be attributed to the higher sample complexity required by Federated-PCA as it is
an inherently streaming method and the (red) Wine dataset is considerably smaller than MNIST.

-300 -250 -200 -150 -100 -50 0
1st PC

-40

-20

0

20

40

60

80

2n
d

P
C

(a) Offline.

-300 -250 -200 -150 -100 -50 0
1st PC

-60

-40

-20

0

20

40

2n
d

P
C

(b) FPCA (with masks), (ε, δ) = (0.6, 0.1).

-300 -250 -200 -150 -100 -50 0
1st PC

-20

0

20

40

60

80

2n
d

P
C

(c) MOD-SuLQ, (ε, δ) = (0.6, 0.1).

-300 -250 -200 -150 -100 -50 0
1st PC

-40

-20

0

20

40

60

2n
d

P
C

(d) FPCA (with masks), (ε, δ) = (1, 0.1).

-300 -250 -200 -150 -100 -50 0
1st PC

-20

0

20

40

60

80

2n
d

P
C

(e) MOD-SuLQ, (ε, δ) = (1, 0.1).

Figure 11: (red) Wine quality projections using different differential privacy budgets, at the top
(fig. 11a) is the full rank PCA while on the left column is Federated-PCA with perturbation masks
and on the right column MOD-SuLQ using DP budget of ε ∈ {0.6, 1} and δ = 0.1 while starting
from a recovery rank of 6. Note here that due to the higher sample complexity requirements of
Federated-PCA the projections appear slighly worse.

34

D.4 Federated Evaluation 35

D.4 Federated Evaluation

To provide additional information with respect to the evaluation we also report the amortised execution
times per number of workers, as if the workers exceed the number of available compute nodes in our
workstation then computation cannot be completed in parallel thus hindering the potential speedup.
In Figure 12 we show the amortised total (fig. 12a), PCA (fig. 12b), and merge (fig. 12c) times
respectively - these results, as in the main text, use Federated-PCA without perturbation masks
but a similar result would apply to this case as well. These results indicate, that in the presence of
enough resources, Federated-PCA exhibits an extremely favourable scalability curve emphasising
the practical potential of the method if used in conjunction with thin clients (i.e. mobile phones).

2 4 8 16 32 64
node count

0

2

4

6

8

10

12

tim
e

(s
)

T=640K
T=1280K
T=1920K
T=2560K
T=3200K

(a) Amortised execution time.

2 4 8 16 32 64
node count

0

2

4

6

8

10

12

tim
e

(s
)

T=640K
T=1280K
T=1920K
T=2560K
T=3200K

(b) Amortised PCA time.

2 4 8 16 32 64
node count

0

0.02

0.04

0.06

0.08

tim
e

(s
)

T=640K
T=1280K
T=1920K
T=2560K
T=3200K

(c) Amortised time spent merging.

Figure 12: Amortised execution times for total (fig. 12a), PCA (fig. 12b), and merge (fig. 12c)
operations respectively.

D.5 Memory Evaluation

We benchmarked each of the methods used against its competitors and found that our Federated-PCA
performed favourably. With respect to the experiments, in order to ensure accurate measurements,
we started measuring after clearing the previous profiler contents. The tool used in all profiling
instances was MATLAB’s built-in memory profiler which provides a rough estimate about the memory
consumption; however, it has been reported that can cause issues in some instances.

These empirical results support the theoretical claims about the storage optimality of FPCA. In terms
of average and median memory allocations, FPCA is most of the times better than the competitors.
Naturally, since by design, PM requires the materialisation of larger block sizes it requires more
memory than both FPCA as well as FD. Moreover, GROUSE, in its reference implementation
requires the instantiation of the whole matrix again; this is because the reference version of GROUSE
is expected to run on a subset of a sparse matrix which is copied locally to the function - since in
this instance we require the entirety of the matrix to be allocated and thus results in a large memory
overhead. An improved, more efficient GROUSE implementation would likely solve this particular
issue. Concluding, we note that although Federated-PCA when using perturbation masks consumes
slightly more memory, this is due to the inherent added for supporting differential privacy; however,
this cost appears to be in line with our O(db) memory bound and not quadratic with respect to d, as
with competing algorithms.

Table 1: Average / median memory allocations (Kb) for a set of real-world datasets.

Humidity Light Voltage Temperature

FPCA (with mask) 166.57 / 81.23 Kb 172.00 / 99.17 Kb 289.02 / 143.79 Kb 257.00 / 195.30 Kb

FPCA (no mask) 138.11 / 58.99 Kb 104.00 / 76.03 Kb 204.58 / 23.47 Kb 187.74 / 113.28 Kb
PM 905.45 / 666.11 Kb 685.48 / 685.44 Kb 649.12 / 644.35 Kb 657.57 / 668.27 Kb
GROUSE 2896.61 / 2896.62 Kb 2896.84 / 2896.62 Kb 2772.86 / 2772.62 Kb 3379.62 / 3376.62 Kb
FD 162.70 / 117.92 Kb 170.48 / 127.91 Kb 114.46 / 112.66 Kb 196.11 / 118.59 Kb
SP 476.68 / 405.01 Kb 1009.03 / 508.11 Kb 348.84 / 351.98 Kb 541.56 / 437.61 Kb

35

D.6 Extended Time-Order Independence Empirical Evaluation 36

D.6 Extended Time-Order Independence Empirical Evaluation

The figures show the errors for recovery ranks r equal to 5 (13a), 20 (13b), 40 (13c), 60 (13d), and
80 (13e). It has to be noted, that legends which are subscripted with s (e.g. grs) compare against the
SVD output while the others against its own output of the perturbation against the original Y. We
remark that when trying a full rank recovery (i.e. r = 100), SPIRIT failed to complete the full run as
it ended up in some instances with linearly dependent columns, while the other methods perform
similarly to the previous examples.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-80

-70

-60

-50

-40

-30

-20

-10

0

er
ro

rs
 (

lo
g(

rm
se

))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(a) Permutation errors for recovery rank r = 5.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-60

-50

-40

-30

-20

-10

0

er
ro

rs
 (

lo
g(

rm
se

))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(b) Permutation errors for recovery rank r = 20.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-50

-40

-30

-20

-10

0

er
ro

rs
 (

lo
g(

rm
se

))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(c) Permutation errors for recovery rank r = 40.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-25

-20

-15

-10

-5

0
er

ro
rs

 (
lo

g(
rm

se
))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(d) Permutation errors for recovery rank r = 60.

1e-05 0.0001 0.001 0.01 0.1 1 2 3 4
-30

-25

-20

-15

-10

-5

0

er
ro

rs
 (

lo
g(

rm
se

))

fpca
fpca

s

pm
pm

s

gr
gr

s

sp
sp

s

fd
fd

s

(e) Permutation errors for recovery rank r = 80.

Figure 13: Mean Subspace errors over 20 permutations of Y ∈ R
100×10000 for recovery rank r equals

5 (a), 20 (b), 40 (c), 60 (d), and 80 (e).

36

