Part of Advances in Neural Information Processing Systems 26 (NIPS 2013)

*Chris Hinrichs, Vamsi K. Ithapu, Qinyuan Sun, Sterling C. Johnson, Vikas Singh*

Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER). The well known Bonferroni correction method, while being simple to implement, is quite conservative, and can substantially under-power a study because it ignores dependencies between test statistics. Permutation testing, on the other hand, is an exact, non parametric method of estimating the FWER for a given α threshold, but for acceptably low thresholds the computational burden can be prohibitive. In this paper, we observe that permutation testing in fact amounts to populating the columns of a very large matrix P. By analyzing the spectrum of this matrix, under certain conditions, we see that P has a low-rank plus a low-variance residual decomposition which makes it suitable for highly sub–sampled — on the order of 0.5% — matrix completion methods. Thus, we propose a novel permutation testing methodology which offers a large speedup, without sacrificing the fidelity of the estimated FWER. Our valuations on four different neuroimaging datasets show that a computational speedup factor of roughly 50× can be achieved while recovering the FWER distribution up to very high accuracy. Further, we show that the estimated α threshold is also recovered faithfully, and is stable.

Do not remove: This comment is monitored to verify that the site is working properly