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Proof of Theorem 3.1

Denote that r non-zero eigenvalues of Q = UWWTUT ∈ Rv×v by λ1 ≥ λ2 ≥, . . . , λr > 0; and let S be a v × t
random matrix such that Si,j ∼ N (0, σ2), with unknown σ2. As v, t→∞ such that vt � 1, the eigenvalues λ̃i of the
perturbed matrix Q+ SST will satisfy

|λ̃i − λi| < δλi i = 1, . . . , r; λ̃i < δλr i = r + 1, . . . , v (?)

for some 0 < δ < 1, whenever σ2 < δλr

t

Proof. The first half of the proof emulates Theorem 2.1 from [1]. Consider the matrix X =
√
tS. By the structure

of S, each entry of X is i.i.d.Gaussian with zero–mean and variance σ2t. Let Y = 1
tXXT and denote its ordered

eigenvalues as γi, i = 1, . . . , v (large to small). Consider the random spectral measure

µv(A) =
1
v#{γi ∈ A}, A ⊂ R

The Marchenko–Pastur law [2] states that as v, t → ∞ such that vt ≤ 1, the random measure µv → µ, where dµ is
given by

dµ(a) = 1
2πσ2tγa

√
(γ+ − a)(a− γ−)1[γ−,γ+]da

where γ = v
t . Here 1[γ−,γ+] is an indicator function that is non–zero on [γ−, γ+]. γ± = σ2t(1±√γ)2 are the extreme

points of the support of µ. It is well known that the extreme eigenvalues converge almost surely to γ± [3]. Since
v, t→∞ and γ = v

t � 1, the length of [γ−, γ+] is much smaller than the values in it. Hence we have,

γ± ∼ σ2t(1± 2
√
γ) ;

√
(γ+ − a)(a− γ−)� a

and the new dµ(a) is given by

dµ(a) =

√
(σ2t(1 + 2

√
γ)− a)(a− σ2t(1− 2

√
γ))

2πγσ4t2
1[σ2t(1−2√γ),σ2t(1+2

√
γ)]da

=
1

2πγσ4t2

√
4γσ4t2 − (a− σ2t)21[σ2t(1−2√γ),σ2t(1+2

√
γ)]da

The form we have derived for dµ(a) shares some similarities with dµX(x) in Section 3.1 of [1]. The analysis in
[1] takes into account the phase transition of extreme eigen values. This is done by imitating a time–frequency type
analysis on compact support of extreme spectral measure i.e. using Cauchy transform. For our case, the Cauchy
transform of µ(a) is

Gµ(z) =
1

2γσ4t2

(
z − σ2t− sgn(z)

√
(z − σ2t)2 − 4γσ4t2

)
for z ∈ (∞, σ2t(1− 2

√
γ)) ∪ (σ2t(1 + 2

√
γ),∞)

Since we are interested in the asymptotic eigen values (and γ � 1), Gµ(γ±) and the functional inverse G−1µ (θ) are
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Gµ(γ+) =
1

σ2t
√

(γ)
; Gµ(γ−) = − 1

σ2t
√

(γ)
; G−1µ (θ) = σ2t+ 1

θ + γσ4t2θ

Hence, the asymptotic behavior of the eigen values of perturbed matrix Q+ SST is (observing that SST = Y and Q
has r non–zero positive eigen values)

λ̃i(i = 1, . . . , r) ≈

{
λi + σ2t+ γσ4t2

λi
for λi > γσ2t

γσ2t else
(∗)

λ̃i(i = r + 1, . . . , v) ≈ σ2t(1− 2
√

(γ))

With λ̃i, i = 1, . . . , v in hand, we now bound the unknown variance σ2 such that (?) is satisfied. We only have two
cases to consider,

(1) λi > γσ2t , i = 1, . . . , r (2) λi ≤ γσ2t , i = k, . . . , r (for some k ≥ 1)

We constrain the unknown σ2 such that case (2) does not arise. Substituting for λ̃i‘s from (∗) in (?), we get,

σ2t+ γσ4t2

λi
< δλi ; λi > γσ2t ; σ2t(1− 2

√
(γ)) < δλr

These inequalities will hold when σ2 < δλr

t (since γ =� 1, δ < 1 and λ1 ≥ λ2 ≥, . . . , λr).

Proof of Theorem 3.2

Letmt = maxiPi,t be the maximum observed test statistic at permutation trial t, and similarly let m̂t = maxi P̂i,t be
the maximum reconstructed test statistic. Further, let the maximum reconstruction error be ε, such that |Pi,t− P̂i,t| ≤
ε. Then, for any real number k > 0, we have,

Pr
[
mt − m̂t − (b− b̂) > kε

]
<

1

k2

where b is the bias term described in Section 2, and b̂ is its estimate from the training phase.

Proof. Recall that there is a bias term in estimating the distribution of the maximum which must be corrected for this
is because var(Ŝ) underestimates var(S) due to the bias/variance tradeoff. Let b be this difference:

b = Et
[
max
i

Pi,t

]
− Et

[
max
i

P̂i,t

]
.

Further, recall that we estimate b by taking the difference of mean sample maxima between observed and reconstructed
test statistics over the training set, giving b̂, which is an unbiased estimator of b — it is unbiased because a difference
in sample means is an unbiased estimator of the difference of two expectations.

Let δt = mt − m̂t. To show the result we must derive a concentration bound on δt, which we will do by applying
Chebyshev’s inequality. In order to do so, we require an expression for the mean and variance of δt. First, we derive
an expression for the mean. Taking the expectation over t of mt − m̂t we have,

Et [mt − m̂t] = Et
[
max
i

Pi,t −max
i

P̂i,t − b̂
]

= Et
[
max
i

Pi,t

]
− Et

[
max
i

P̂i,t

]
− b̂

= b− b̂

where the second equality follows from the linearity of expectation.
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Next, we require an expression for the variance of δt. Let i be the index at which the maximum observed test statistic
occurs for permutation trial t, and likewise let j be the index at which the maximum reconstructed test statistic occurs.
Thus we have,

Pi,t ≤ P̂i,t + ε ≤ P̂j,t + ε

Pi,t ≥ Pj,t ≥ P̂j,t − ε,

and so we have that
|mt − m̂t| < 2ε

and so
var(mt − m̂t) ≤ ε2.

Applying Chebyshev’s bound,

Pr
[
mt − m̂t − (b− b̂) > kε

]
<

1

k2

which completes the proof.
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Fig 1. : All 4 datasets

(a) Dataset A (b) Dataset B

(c) Dataset C (d) Dataset D

Figure 1: KL (blue) and BD (red) measures between the true max. null distribution (given by the full matrix P) and that recovered
by our method (thick lines), along with the baseline naive subsampling method (dotted lines). Each plot corresponds to one of the
four datasets used in our evaluations. Note that the y–axis is in log scale.
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Fig 2. : All 4 datasets

(a) Speedup (at 0.4%) - 45.1 (b) Speedup (at 0.4%) - 45.6

(c) Speedup (at 0.4%) - 48.5 (d) Speedup (at 0.4%) - 56.4

Figure 2: Computation time of our model compared to that of computing the entire matrix P. Each plot corresponds to one of
the four datasets A, B, C and D (in that order). The horizontal line (magenta) shows the time taken for computing the full matrix
P. The other three curves include : subsampling (blue), GRASTA recovery (red) and total time taken by our model (black). Plots
correspond to the low sampling regime (< 1%) and note the jump in y–axis (black boxes). For reference the speedup at 0.4%
sampling rate is reported at the bottom of each plot.
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