CamoPatch: An Evolutionary Strategy for Generating Camoflauged Adversarial Patches

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Phoenix Williams, Ke Li

Abstract

Deep neural networks (DNNs) have demonstrated vulnerabilities to adversarial examples, which raises concerns about their reliability in safety-critical applications. While the majority of existing methods generate adversarial examples by making small modifications to the entire image, recent research has proposed a practical alternative known as adversarial patches. Adversarial patches have shown to be highly effective in causing DNNs to misclassify by distorting a localized area (patch) of the image. However, existing methods often produce clearly visible distortions since they do not consider the visibility of the patch. To address this, we propose a novel method for constructing adversarial patches that approximates the appearance of the area it covers. We achieve this by using a set of semi-transparent, RGB-valued circles, drawing inspiration from the computational art community. We utilize an evolutionary strategy to optimize the properties of each shape, and employ a simulated annealing approach to optimize the patch's location. Our approach achieves better or comparable performance to state-of-the-art methods on ImageNet DNN classifiers while achieving a lower $l_2$ distance from the original image. By minimizing the visibility of the patch, this work further highlights the vulnerabilities of DNNs to adversarial patches.