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Abstract

Deep neural networks (DNNs) have demonstrated vulnerabilities to adversarial
examples, which raises concerns about their reliability in safety-critical applications.
While the majority of existing methods generate adversarial examples by making
small modifications to the entire image, recent research has proposed a practical
alternative known as adversarial patches. Adversarial patches have shown to be
highly effective in causing DNNs to misclassify by distorting a localized area
(patch) of the image. However, existing methods often produce clearly visible
distortions since they do not consider the visibility of the patch. To address this, we
propose a novel method for constructing adversarial patches that approximates the
appearance of the area it covers. We achieve this by using a set of semi-transparent,
RGB-valued circles, drawing inspiration from the computational art community.
We utilize an evolutionary strategy to optimize the properties of each shape, and
employ a simulated annealing approach to optimize the patch’s location. Our
approach achieves better or comparable performance to state-of-the-art methods on
ImageNet DNN classifiers while achieving a lower l2 distance from the original
image. By minimizing the visibility of the patch, this work further highlights the
vulnerabilities of DNNs to adversarial patches.

1 Introduction

Deep neural networks (DNNs) have revolutionized the field of computer vision, demonstrating
significant progress in several tasks [38, 51, 53]. Nevertheless, they are not without vulnerabilities.
Recent studies highlight a critical weakness: susceptibility to adversarial examples, where subtle,
intentionally designed perturbations to input images result in the DNNs misclassification [22, 54, 43].
The existence of these adversarial examples in the physical world poses a significant threat to
security-critical applications such as autonomous vehicles and medical imaging [31, 56, 33, 5]. As a
result, developing methods to generate adversarial images has emerged as a critical research area for
assessing the robustness of DNNs [3].

While initial studies emphasized the creation of adversarial examples with lp-norm (p can be 1, 2, or
∞) constrained perturbations, current research has shifted towards generating sparse perturbations,
which alter only a small portion of the original image [12, 19, 15, 61]. These sparse perturbations
have proven to be as effective as traditional l2 or l∞-constrained perturbations. Adversarial patches,
localized perturbations affecting a small portion of the image, have garnered significant interest as a
type of sparse perturbation [47, 66, 33]. Various methods for generating adversarial patches have
been proposed for both white-box (where complete information about the model is known) and black-
box (where only the input-output pairs are accessible) scenarios [29, 7, 47, 15, 66, 20, 28, 11, 27].
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Figure 1: This illustration shows adversarial images generated by two algorithms, the proposed
method and Patch-RS [15], both attacking a conventionally trained (left) and adversarially trained
(right) ImageNet classifiers. While both images are adversarial, the adversarial patch generated by
the state-of-the-art Patch-RS algorithm visibly distorts the image, whereas the proposed method’s
adversarial patch remains more similar to the original image. This similarity is demonstrated by
calculating the l2 distance between the adversarial patches and the area of the original image they are
placed upon.

However, a significant challenge remains: the unbounded magnitudes of adversarial patches often
lead to noticeable distortions in the original image, as depicted in Figure 1.

A contrasting approach to adversarial attacks is embodied by minimum-norm attacks, a class of
strategies that generate adversarial examples through minimizing a particular norm of the adversarial
perturbation [40, 6, 13, 58]. Due to their ability to measure adversarial accuracy under a range
of perturbation budgets, these attacks serve as valuable tools for assessing DNN robustness [45].
However, these methods come with a notable drawback: they rely heavily on numerous DNN queries
to substantially decrease the perturbation size. This dependence becomes particularly problematic in
black-box scenarios, where the number of queries is often restricted, thus making it more difficult to
reduce the perturbation size effectively [26].

Although adversarial patches have proven effective in causing DNN misclassification, existing
methods often overlook the necessity of minimizing the visual impact of the patch on the original
image. This oversight leads to patches that are easily detectable. To address this shortcoming, we
introduce a novel method for generating adversarial patches. Our approach utilizes semi-transparent
circles with RGB values, which blend into the original image. We employ simulated annealing for
optimal location selection and implement an evolutionary strategy to fine-tune each circle’s properties.
The goal of our method is to induce the desired misclassification while minimizing the l2 distance
between the patch and the original image, thereby camouflaging the patch effectively.

The rest of this paper is organized as follows. Section 2 overviews some related works, underscoring
their contributions and limitations. In Section 3, we outline our proposed attack scenario and provide
an in-depth explanation of our method’s implementation. Empirical results are presented and analyzed
in Section 4. Section 5 concludes this paper and sheds some light on future directions.

2 Related Works

Adversarial attacks on DNNs have been one of most active fields in the machine learning commu-
nity. A common strategy in these attacks is to create imperceptible perturbations, often achieved
by constraining the perturbations using the lp-norm. These perturbations are typically generated
differently depending on the access level to the targeted DNN’s information. In a white-box scenario,
where the attacker has full access to the DNN’s details, approaches often leverage the gradient
information of the DNN’s loss function. This gradient is used within an optimization algorithm to
generate adversarial perturbations [54, 22, 39]. On the other hand, in a black-box scenario, where
the attacker’s access is limited to the DNN’s output probabilities, various attack methods estimate
the loss function’s gradient and use it within a gradient-based optimization technique [26, 4, 59].
Some researchers have also proposed heuristic methods for the black-box scenario that do not rely on
gradient information [1, 2, 27, 28, 11].
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Our work fits into this landscape by focusing on the black-box scenario. However, unlike many
existing methods, we aim to create adversarial patches that are not only effective but also visually
blend into the original image.

2.1 Adversarial Patches

Adversarial patches, designed to cause image misclassification, represent a unique approach to
adversarial attacks. These patches are typically small, visible, and often square-shaped, strategically
applied to the targeted image [15, 47, 66]. The pioneering work by Brown et al. introduced the
concept of universal adversarial patches, which cause misclassification when applied to a variety
of images. Using the gradient information of the DNN, they utilized stochastic gradient descent
to optimize the patch pattern, which was subsequently superimposed onto a set of target images
at predetermined locations. Following this, Karmon et al. proposed LaVAN that also generates
universal patches. However, they used random search to optimize the patch location. In black-box
scenarios, Brown et al. produced universal adversarial patches by executing white-box attacks on
four DNN classifiers and transferring the results to an unseen classifier. Croce et al. proposed the
Patch-RS method, which generates adversarial patches by minimizing the aggregated loss of a set
of images, using random search for patch location optimization and the Square-Attack method
of Andriushchenko et al. for patch pattern optimization.

In contrast to universal adversarial patch approaches, other researchers have focused on generating
image-specific patches. Fawzi and Frossard created patches for individual images by optimizing the
position and shape of rectangular patches with a predefined monochrome pattern. Built upon the
LaVAN concept, Rao et al. proposed alternative techniques for patch location optimization using
random search variants. Yang et al. and Croce et al. further advanced the image-specific scenario,
with the former using reinforcement learning for patch generation and the latter applying the Patch-RS
method to minimize the loss of a single image.

Despite recent advancements in creating both universal and image-specific adversarial patches, the
glaring distortions from significant modifications to input images raise practical concerns. This issue
also impacts the accurate assessment of DNN robustness against adversarial patches.

2.2 Minimum-Norm Attacks

Minimum-norm attacks diverge from the traditional adversarial attacks by focusing on finding the
smallest perturbation that can lead to misclassification under a specific norm. These attacks offer a
more comprehensive assessment of DNN robustness [45]. Although white-box attacks have made
significant progress in enhancing the query efficiency of minimum-norm attacks [45, 41, 48], black-
box attacks still demand a substantial query budget to achieve effectiveness. The ZOO algorithm [8]
constructs the problem as an aggregated function of the perturbations l2-norm and weighted loss
function. Estimating its gradient using finite-differences, the authors make use of coordinate descent to
minimize the formulated problem. Tu et al. addressed the query inefficiency of ZOO by reducing the
size of the perturbation using a trained Auto-Encoder DNN. Ilyas et al. remove the need for estimating
coordinate-specific gradients by making use of natural evolutionary strategies, reducing the l∞-norm
of the perturbation by iteratively maximizing the adversarial criterion within a given norm constraint,
then reducing the norm. Despite the efficiency improvement of gradient estimation, existing black-box
methods still require large query budgets. The SimBA method of [23] incrementally adds scaled
orthogonal vectors to the current perturbation, increasing its l2-norm, but is unable to reduce the
l2-norm of the perturbation once the desired misclassification has been achieved.

Therefore, while recent works have achieved large performance gains within the white-box scenario,
black-box methods suffer from query inefficiency which restricts their applicability to real-world
scenarios, particularly when the query budget is limited.

2.3 Evolutionary Strategies for Adversarial Attacks

Many existing studies employ evolutionary strategies (ES) for non-patch-based adversarial attacks. In
the black-box scenario, ES has gained popularity due to its independence from gradient information.
Notable examples include the works of [1, 46, 36, 63], who utilize evolutionary algorithms to create
l∞ constrained adversarial perturbations. For conducting sparse adversarial images Williams and Li
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Algorithm 1: Evolutionary Strategy for Generating Disguised Adversarial Patches (CamoPatch)

Input: Margin loss L, input x ∈ X ⊆ [0, 1]h×w×3, query budget K, sparsity ϵ, initial
temperature t, number of circles N , location schedule li, evolutionary step-size σ

1 s← √ϵ // Patch Side Length
2 δ ← InitialPatch(N, s)
3 i ∼ U({0, · · · , w − s})
4 j ∼ U({0, · · · , h− s})
5 x∗ ← x
6 x∗

i:i+s,j:j+s ← δ // Apply patch
7 L← L(x∗)
8 norm← ||xi:i+s,j:j+s − δ||2
9 for k ← 1; k < K; k ← k + 1 do

10 if mod(k, li+ 1) = 0 then
11 i, j, L, norm← LocationUpdate() // see Algorithm 4

12 else
13 δ, L, norm← PatchUpdate() //see Algorithm 3

14 return x∗

make use of a multi-objective evolutionary algorithm to minimize both the number of modified pixels
and magnitude of the pixels modification. ESs have also been used to construct adversarial examples
within other domains such as natural language processing [68, 67].

The use of evolutionary algorithms has also been explored for constructing adversarial patches. Chen
et al. addressed the more-limited decision-only setting (where only the predicted label is accessible
to the attacker) by placing localised regions of an image from the target class onto the attacked image.
Under the constraint of the patch causing misclassification, the authors optimised the coordinates of
the patch by using an adapted differential evolution algorithm to minimise the patch’s l0 norm.

3 Proposed Method

In essence, our method strives to generate adversarial patches that seamlessly blend into the targeted
image by modeling the superimposed area with semi-transparent, RGB-valued circles. We adopt
an approach akin to existing works that generate adversarial patches by iteratively optimizing both
the patch and its position on the image. The balance between these steps is managed by a location
schedule parameter, li. In this section, we start by defining the problem formulation, followed by a
detailed description of our proposed method. The overarching structure of our method is summarized
in Algorithm 1.

3.1 Problem Formulation

Consider a trained DNN image classifier f : X ⊆ [0, 1]h×w×3 → RP which takes a benign RGB
image x ∈ X of height h and width w and outputs a label y = argmax

p∈{1,··· ,P}
fp(x), with P representing

the total number of class labels. A non-targeted attack seeks a perturbation δ satisfying:

argmax
p∈{1,··· ,P}

fp(x+ δ) = yq, (1)

where y is the original class label for x and yq = argmax
q ̸=y

fp(x) is a label corresponding to a class

other than the true class y. For targeted attacks yq is assigned a target label yt, where yt ̸= y. In the
adversarial patch scenario, the number of modified pixels is limited to maintain the semantic content
of the image. Hence, the problem is cast as:

minimize
δ

L(f ;x+ δ, yq)

subject to ||δ||0 ≤ ϵ, 0 ≤ x+ δ ≤ 1,
(2)
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where minimizing the loss function L yields the desired adversarial image.

Most existing algorithms solve (2) by fixing the number of disturbed pixels to a constant value ϵ,
allowing unbounded modifications [15, 29, 7]. Unlike these, our proposed method aims to create
adversarial patches that closely resemble the area of the original image they overlay. We approach
this as a constrained optimization problem, akin to the minimum-norm setting [45, 48, 58]. Thus, our
objective is to generate a δ that solves the subsequent optimization problem:

minimize
δ

||x − δ||2
subject to ||δ||0 ≤ ϵ,

L(f ;x+ δ, yq) < 0,
0 ≤ x+ δ ≤ 1,

(3)

where the patch is a square with a side length of
√
ϵ. We ensure that the value of the loss function

L(·) is negative when x+ δ results in misclassification. This is achieved by defining the loss in the
constraint as the margin loss:

L(f ;x+ δ, yq) = fy − fyq
, (4)

for non-targeted attacks and the cross-entropy loss:

L(f ; ,x+ δ⃗, yt) = −fyt
+ log(

P∑
p=1

efp) (5)

for targeted attacks.

3.2 Patch Initialization

We construct an adversarial patch by overlaying N circles on a black image (see Figure 2), inspired
by evolutionary strategies prevalent in computational art [32, 21, 57]. They aim to approximate
images using semi-transparent, RGB-valued shapes. Circular shapes, due to their fewer adjustable
properties, are a popular choice. Furthermore, the use of semi-transparent circular shapes have also
been used by Li et al. and Zolfi et al. to construct adversarial examples. Whereas this work constructs
adversarial patches, Li et al. and Zolfi et al. simulate stickers placed over a camera, modifying the
entire image.

The adversarial patch δ is represented as the concatenation of N shapes:

δ = δ1 ⊕ δ2 · · · ⊕ δN , (6)

where ⊕ denotes the concatenation operator. Each shape δa, where a ∈ {1, · · · , N}, is represented
by a vector comprised of seven elements including the center’s coordinates (ca1 , ca2), the radius ra,
the RGB values (Ra, Ga, Ba), and the shape’s transparency T a. These elements, normalized to
continuous values between 0 and 1, are initially randomly sampled from a uniform distribution
δa ∼ U(0, 1). The initial location of a patch is also randomly and uniformly sampled from the
available pixel locations.

3.3 Patch Optimization

In this paper, we employ a single solution evolutionary strategy, known as (1 + 1)-ES, to modify the
properties of each shape δa. This approach has proven to be efficient for approximating images [42].
To adjust the properties, we sample values from a normal distribution σ ·N (0, I), where σ is a tunable
parameter controlling the trade-off between exploration (i.e., searching new areas in the solution
space) and exploitation (i.e., refining the current solution). A larger σ promotes exploration, while a
smaller one favors exploitation. We then use the updated perturbation δ∗ to construct an adversarial
image x∗∗. The solution that satisfies the constraint as per (3) is retained. If both solutions meet this
constraint, we opt for the one with a smaller l2 distance from the original image. The patch update
method is detailed in Algorithm 3 in the supplementary document.

3.4 Location Optimization
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Figure 2: This illustration shows an adversarial
image (left) with the adversarial patch outlined,
and the magnified patch (right) for better visibility.
This patch is generated by the proposed method
using N = 100 overlapping circular shapes.

Addressing the discrete nature of pixel locations,
many existing methods have employed random
search to optimize the position of the patch
within the image [15, 29, 47]. However, ran-
dom search methods often falter when encoun-
tering local optima. To mitigate this, Skiscim
and Golden introduced simulated annealing, a
method that probabilistically accepts worse so-
lutions based on the search temperature and
the performance difference between current and
new solutions. This approach promotes explo-
ration of the search space in the early stages of
optimization and gradually becomes more selec-
tive, favoring solutions with better quality in the
later stages.

In our work, we leverage the fast simulated an-
nealing approach proposed by Szu and Hartley to optimize the location of a patch. During each
iteration k, we uniformly sample a single location (denoted as (i∗, j∗)) from the location space. Then,
we apply the patch to the new location on the input image x, and construct an updated adversarial
image x∗∗. The new solution x∗∗ is then evaluated using the loss function L. If both x∗ and x∗∗

satisfy the loss L constraint as per (3), we retain the solution with the lowest l2-norm from the original
image. Otherwise, simulated annealing is employed to probabilistically decide the acceptance of
the new solution. Specifically, the acceptance probability is defined as exp(−d/tcurr), where d is
the loss difference between the current and new solution, and tcurr = t/k follows an exponentially
decreasing schedule. This formulation ensures better solutions are always selected, while solutions
with relatively poor quality are more likely to be accepted in the early search stages for enhanced
exploration. The parameter t is predefined, with larger values promoting exploration during a longer
portion of the attack process. The detailed location update method can be found in Algorithm 4 in the
supplementary document.

4 Empirical Study

In this section, we empirically evaluate our proposed method’s effectiveness by attacking classifiers
trained on the ImageNet dataset [16]. The experimental setup is outlined in Section 4.1, followed
by a comparative analysis with state-of-the-art adversarial patch methods, including Patch-RS [15],
TPA [66], OPA [20], Adv-Watermark [27] and a black-box adaptation of LOAP [47] in Section 4.2.
Last but not the least, Section 4.3 offers an ablation study that scrutinizes the significance of various
components and parameters within our proposed method.

4.1 Experimental Setup

Dataset and Classifiers Settings: For our experiments, we follow a similar setup to preceding
works, conducting non-targeted and targeted attacks on DNN classifiers trained on the ImageNet
dataset. We specifically target three adversarially trained and defended classifiers, namely AT-ResNet-
50 [49], AT-WideResNet-50-2 [49] and PatchGuard [65], along with three conventionally trained
classifiers, VGG-16 [51], ResNet-50 [24] and ViT-B/16 [17]. A subset of 1, 000 images, correctly
classified by each classifier from the ImageNet validation set, is chosen and resized to dimensions of
224 × 224 × 3. For targeted attacks we randomly select yt for each image ensuring it is different
from the images true label y. The adversarially trained and defended classifiers are implemented
using the RobustBench library [14] and authors original implementations, respectively, while the
three conventional classifiers are derived from their pre-trained versions available in the PyTorch
library [44]. All experiments were carried out on a system with an NVIDIA GeForce RTX 2080Ti
GPU.

Parameter Settings: To select the value of ϵ, we follow the approach of Croce et al., setting
ϵ = 1600. This corresponds to a patch size of 40× 40, which constitutes roughly 3.2% of the total
pixel count. We assign a budget of 10, 000 queries for each attack. As discussed in Section 3, our
proposed method entails four free parameters: σ, lit, t, and N . For these parameters, we set σ = 0.1,
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Table 1: Table presents the before and after-accuracy of each method along with the l2 distance of the
adversarial patch and the non-normalised residual (NNR) between the adversarial and original image
after conducting non-targeted attacks. We provide the mean and variance of each metric over 10 runs.

ViT-B/16 BagNet9 with PatchGuard

Attack
Method

Accuracy l2 NNR Accuracy l2 NNRl

- 77.91% - - 55.1% -

CamoPatch 8.00% (0.05)† 0.09 (0.02) 0.12 (0.02) 3.20% (0.01)† 0.07(0.03)‡ 0.11 (0.01)†

Patch-RS* 19.00% (0.10)‡ 0.68 (0.05)† 0.39 (0.07)‡ 5.80% (0.02)‡ 0.42 (0.05)‡ 0.30 (0.05)†

Patch-RS 19.00% (0.10)‡ 0.71 (0.12)† 0.41 (0.09)‡ 5.80% (0.02)‡ 0.62 (0.18)‡ 0.57 (0.11)†

TPA 38.12% (0.91)‡ 0.59 (0.08)‡ 0.54 (0.09)‡ 32.87% (1.45)‡ 0.62 (0.11)‡ 0.61(0.09)‡

OPA 33.09% (0.17)‡ 0.68 (0.23)‡ 0.68 (0.07)‡ 57.89% (2.01)‡ 0.61 (0.16)‡ 0.67 (0.04)‡

LOAP 43.91% (0.80)‡ 0.63 (0.05)‡ 0.50 (0.13)‡ 72.82% (0.14)‡ 0.89 (0.23)‡ 0.78 (0.11)‡

Adv-watermark 36.01% (0.12)‡ 0.17(0.04)‡ 0.28(0.03)‡ 42.00% (0.45)‡ 0.14(0.01)‡ 0.29(0.05)‡

AT-WideResNet-50-2 AT-ResNet-50

Attack
Method

Accuracy l2 NNR Accuracy l2 NNR

- 68.46% - - 64.02% -

CamoPatch 12.98% (0.01)† 0.14 (0.05)† 0.12 (0.07)† 6.00% (0.03)† 0.15 (0.03)† 0.13 (0.03)†

Patch-RS* 14.42% (0.01)‡ 0.43 (0.07)‡ 0.30 (0.05)‡ 12.00% (0.02)‡ 0.41 (0.12)‡ 0.33 (0.05)‡

Patch-RS 14.42% (0.01)‡ 0.74 (0.08)‡ 0.42 (0.07)‡ 12.00% (0.02)‡ 0.74 (0.09)‡ 0.43 (0.07)‡

TPA 51.66% (1.3)‡ 0.82 (1.21)‡ 0.82 (0.07)‡ 34.82% (1.41)‡ 0.92 (0.05)‡ 0.87(0.09)‡

OPA 36.88% (0.1)‡ 0.76 (0.20)‡ 0.74 (0.05)‡ 24.83% (1.12)‡ 0.77 (0.14)‡ 0.75 (0.04)‡

LOAP 38.85% (0.4)‡ 0.56 (0.02)‡ 0.46 (0.03)‡ 48.89% (0.1)‡ 0.72 (0.18)‡ 0.64 (0.03)‡

Adv-watermark 52.00% (0.3)‡ 0.37(0.05)‡ 0.23(0.07)‡ 44.00% (0.3)‡ 0.42 (0.02)‡ 0.29 (0.07)‡

VGG-16 ResNet-50

Attack
Method

Accuracy l2 NNR Accuracy l2 NNR

- 73.36% - - 76.12% -

CamoPatch 9.70% (0.03) 0.09 (0.02)† 0.11 (0.02)† 10.00% (0.02)† 0.08 (0.01)† 0.10 (0.01)†

Patch-RS* 6.82% (0.04) 0.42 (0.02)‡ 0.30 (0.05)‡ 15.92% (0.02)‡ 0.45 (0.04)‡ 0.31 (0.04)‡

Patch-RS 6.82% (0.04) 0.63 (0.01)‡ 0.61 (0.07)‡ 15.92% (0.02)‡ 0.67 (0.08)‡ 0.69 (0.07)‡

TPA 47.11% (1.30)‡ 0.61 (0.13)‡ 0.55 (0.05)‡ 38.98% (1.41)‡ 0.61 (0.07)‡ 0.58(0.07)‡

OPA 32.19% (0.10)‡ 0.71 (0.20)‡ 0.64 (0.06)‡ 27.91% (1.12)‡ 0.71 (0.14)‡ 0.66 (0.04)‡

LOAP 37.99% (0.40)‡ 0.68 (0.02)‡ 0.63 (0.05)‡ 47.99% (0.10)‡ 0.78 (0.12)‡ 0.67 (0.05)‡

Adv-watermark 32.00% (0.10)‡ 0.13(0.08)‡ 0.25(0.05)‡ 35.00% (0.40)‡ 0.16(0.01)‡ 0.31(0.07)‡

† denotes the performance of the method significantly outperforms the compared methods
according to the Wilcoxon signed-rank test [60] at the 5% significance level; ‡ denotes the
corresponding method is significantly outperformed by the best performing method (shaded).

t = 300, lit = 4, and N = 100. We provide an empirical justification for these specific settings
in Section 4.3.

Performance Metrics: We evaluate the performance of all considered algorithms by allowing
each method to exhaust the allocated query budget while attacking each classifier. To evaluate the
effectiveness of an attack we report the accuracy of the classifier on the generated adversarial images.
For the successful adversarial images, we report two additional metrics: (1) the l2 distance between
the adversarial patch and the corresponding area of the original image, and (2) the non-normalised
residual (NNR) between the adversarial and original image, which measures the absolute difference
between the pixel values of the constructed patch and the area of the original image it covers.

Given the stochastic nature of our proposed method and the comparison methods, we follow the setup
of [15] and report the mean and variance of each metric over 10 independent runs with different
random seeds. We additionally utilize the Wilcoxon signed-rank test [60] at a 5% significance level
to statistically verify whether the improvements by our method over the compared algorithms across
the 10 runs are significant.

4.2 Comparison

For the adaptation of LOAP [47], we replace its gradient computation method with the estimation
method of [26]. The detailed description of this estimation method can be found in Algorithm 2
in the supplementary document. Additionally, we compare our method with an adapted version of
Patch-RS, where we minimize the l2 distance of the constructed patch in a similar manner to our
proposed method. For each compared algorithm, we utilize the authors’ original implementation and
recommended settings. In our black-box adaptation of LOAP [47], we set the number of iterations
n = 50 and variance η = 0.001 for the gradient estimation method of Ilyas et al..
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Original CamoPatch Patch-RS Patch-RS* TPA OPA LOAP

Figure 3: Adversarial images generated by methods conducting non-targeted attacks on the conven-
tionally trained VGG-16 (top) and adversarial trained WideResNet-50-2 [49] (bottom) classifiers.
Whereas adversarial patches generated by state-of-the-art methods are visibly clear, the patches
generated by the proposed method are well camouflaged within the image.

Results: Table 1 present the statistical results of non-targeted attacks conducted on the trained
ImageNet classifiers. In the tables, "CamoPatch" denotes our proposed method, and "Patch-RS*"
refers to the adapted Patch-RS algorithm.

These results demonstrate that the Patch-RS attack, along with our own method, achieves higher
attack success rates compared to the other state-of-the-art methods. This result aligns with previous
work [15], which demonstrated the superior performance of the Patch-RS algorithm. Despite Patch-RS
outperforming our method when attacking the VGG-16 classifier, according to the Wilcoxon signed-
rank test, there is no significant difference between the performance of both methods. Alternatively,
when attacking the remaining five classifiers, the proposed method is able to significantly outperform
Patch-RS and other compared methods according to the Wilcoxon signed-rank test.

Comparing the l2 distance and NNR of adversarial patches generated by the attack methods, the
proposed method is able to construct adversarial patches that are far less invasive to the input image.
This is supported by the proposed method significantly outperforming all other methods in terms of
both l2 distance and NNR, according to the Wilcoxon signed-rank test. This result highlights that the
effectiveness of our adversarial patches is not compromised by their perceptibility.

Despite the adapted Patch-RS* algorithm being able to generate patches with lower l2 distances from
the original image compared to its original implementation, its use of Square-Attack [2] for patch
pattern optimization results in the patch values taking the corners of the color cube [0, 1]. Therefore,
its ability for l2 minimization is significantly hampered. Alternatively, the proposed method is able to
construct patches with any color, which allows for effective approximations of the original image
area. Figure 3 provides a visual comparison of adversarial images generated by each method when
attacking the VGG-16 and AT-ResNet-50 classifiers.

We report the results of the targeted attacks in Section 6.1 of the supplementary material.

Robustness Evaluation: Despite the assumption that adversarial trained classifiers have improved
robustness compared to their conventionally trained counterparts, our experimental results reveal a
different picture. The proposed method achieves higher success rates when attacking the adversarial
trained classifier AT-ResNet-50 of Salman et al. compared to the conventionally trained VGG-16 and
ResNet-50 classifiers.

However, the results also demonstrate that the adversarial patches generated by the proposed method,
when attacking the AT-ResNet-50 classifier, exhibit larger l2 distances from the original image,
resulting in larger non-normalised residuals between the entire adversarial image and the original
image. This suggests that while the adversarial trained classifier is more susceptible to adversarial
patches, these patches require larger distortions to cause the misclassification. On the other hand,
conventionally trained classifiers are more susceptible to smaller changes in the original image. This
behavior can be attributed to the general procedure of adversarial training, which introduce noise onto
images during the training to enhance robustness. Consequently, patches with larger impact decrease
the likelihood of the image being representative of the training data, as has been observed in other
works [50]. Furthermore, wee see the AT-WideResNet-50-2 classifier exhibits greater robustness to
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Table 2: Table presents the before and after-accuracy of each CamoPatch configuration along with the
l2 distance of the adversarial patch and the non-normalised residual (NNR) between the adversarial
and original image after conducting non-targeted attacks. We provide the mean and variance of each
metric over 10 runs.

VGG-16
li t N σ Accuracy l2 NNR Runtime(s)
- - - - 76.12% - - -
1 300 100 0.1 12.88%(1.0) 0.09(0.04) 0.14(0.01) 440.03(10.32)
4 100 100 0.1 10.79%(1.5) 0.09(0.07) 0.13(0.02) 440.01(10.05)
4 300 100 0.1 9.64%(1.0) 0.09(0.05) 0.11(0.02) 440.03(10.32)
4 300 100 0.3 11.66%(2.0) 0.09(0.06) 0.11(0.05) 439.13(10.56)

† denotes the performance of the method significantly outperforms the compared methods
according to the Wilcoxon signed-rank test [60] at the 5% significance level; ‡ denotes the
corresponding method is significantly outperformed by the best performing method (shaded).

our method. Since both AT-WideResNet-50-2 and AT-ResNet-50 models are trained using the same
process, these results suggest that the WideResNet architecture is inherently more robust.

4.3 Ablation Study

The proposed method consists of four tunable parameters: li, N, σ, and t. To determine their optimal
values, we conduct a grid search over the parameter space. Specifically, we explore li ∈ {1, 4},
N ∈ {100, 300}, t ∈ {100, 300}, and σ ∈ {0.1, 0.3}. The choice of li follows the recommendation
of Croce et al., while the values of σ, t, and N are commonly used in the evolutionary[52] and
computational art [57] communities, respectively.

To evaluate the performance of each parameter configuration, we conduct non-targeted attacks on
the VGG-16 ImageNet classifier using 1000 correctly classified images from the validation set. We
measure the accuracy of the model on the generated adversarial images, l2 distance and NNR for
each configuration over 10 independent runs with different random seeds. Additionally, we compare
the computational time required for each configuration to complete an attack on a single image.

Configurations: Table 2 presents the four top performing configurations in terms of the attack
accuracy. The results demonstrate that the performance of the proposed method heavily depends
on the number of circles N used to construct the patch pattern. Increasing the number of circles
allows for better detailed approximations but also introduces additional complexity. From the results
in Table 2, we observe that the best performing configurations all use N = 100, suggesting that the
patch optimizer, (1 + 1)-ES, struggles with larger numbers of circles. Moreover, we observe longer
runtimes for N = 300 due to the increased number of properties that need adjustment. Beyond the
number of circles N , the proposed method achieves improved performance with a larger budget
for patch pattern optimization (li = 4) and a larger exploration parameter for location optimization
(t = 300). Based on these findings, we set the optimal parameter configuration of the proposed
method to li = 4, t = 300, N = 100, and σ = 0.1.

Simulated Annealing: To justify the use of simulated annealing for location optimization within
the proposed method, we compare its performance with and without simulated annealing. Removing
simulated annealing results in a pure random search method similar to existing works. We keep
the other parameters of the proposed method constant with those outlined in Section 4.1. The
results in Table 3 demonstrate the improved performance exhibited by the proposed method when
the simulated annealing policy is employed for location optimization, particularly when attacking
adversarial trained classifiers. Despite generating patches with a higher l2 distance, the proposed
method with simulated annealing achieves higher success rates. This suggests that more challenging
images require larger distortions to cause misclassification, increasing the average l2 distance of the
generated successful adversarial patches.

5 Contributions, Limitations and Future Work

Contributions: In this work, we propose CamoPatch, a novel attack method for generating ad-
versarial patches that can blend into the targeted image. We achieve this by constructing the patch

9



Table 3: Table presents the before and after-accuracy of the CamoPatch method with (CamoPatch)
and without (CamoPatch*) the simulated annealing policy for location optimization, along with the
l2 distance of the adversarial patch and the non-normalised residual (NNR) between the adversarial
and original image after conducting non-targeted attacks. We provide the mean and variance of each
metric over 10 runs.

CamoPatch CamoPatch∗

Classifier ASR l2 NNR ASR l2 NNR
VGG-16 90.30% (0.03) 0.09 (0.02) 0.11 (0.02) 90.01 (0.1) 0.09 (0.01) 0.11 (0.02)

ResNet-50 90.00% (0.02) 0.08 (0.01) 0.08 (0.01) 90.00% (0.01) 0.09 (0.01) 0.1 (0.02)

AT-WideResNet-
50-2

87.02% (0.01)† 0.14 (0.05)‡ 0.12 (0.07) 83.02% (0.02)‡ 0.11 (0.05)† 0.09 (0.02)

AT-ResNet-50 94.00% (0.03)† 0.15 (0.03) 0.13 (0.03) 90.00% (0.01) 0.14 (0.03) 0.13 (0.05)

† denotes the performance of the method significantly outperforms the compared methods
according to the Wilcoxon signed-rank test [60] at the 5% significance level; ‡ denotes the
corresponding method is significantly outperformed by the best performing method (shaded).

pattern using a combination of semi-transparent, RGB-valued circles, which are optimized to cause
misclassification and approximate the covered area of the original image. By incorporating a sim-
ulated annealing policy for location optimization, our method generates adversarial patches with
improved or comparable success rates, while minimizing the visual impact on the target image.

Ethical Considerations: Adversarial patches have gained attention due to their potential real-world
applications, where attackers can print and physically place them to deceive real-world implemented
DNNs [7, 18]. However, existing methods often generate patches that are visually clear and easily
detectable to a human observer. Our work introduces the concept of camouflaged adversarial patches,
which are difficult for both humans and computer vision systems to perceive. This raises further
concerns about the robustness of DNN classifiers in safety-critical applications. Adversarial training
has proven to be an effective method of improving the robustness of DNN classifiers to adversarial
patches [47]. Incorporating images with camouflaged adversarial patches into the training process
of DNNs may be a promising avenue to enhance their robustness and mitigate the vulnerabilities
demonstrated in this work.

Limitations and Future Work: It is important to acknowledge the limitations of the proposed
method and identify potential areas for future research. One limitation is that our method assumes
the attacker has access to the output probabilities of the targeted DNN, which may not always be the
case in real-world scenarios. Future work could explore adapting the proposed method to scenarios
where only the predicted label of the input is available, by utilizing estimated loss functions such
as the one proposed by Ilyas et al.. Furthermore, techniques from weakly supervised learning can
be incorporated into the proposed method to address the label-only setting. Specifically, by using
estimation techniques [26] to score constructed adversarial images, the use of weakly supervised
image classification models [25] as surrogates could improve the efficiency of the proposed method
in addition to providing a direction of the search for the label-only setting. Alternatively, utilizing
the stochastic nature of the proposed method to generate a set of non-evaluated candidate solutions,
the use of the weakly supervised learning techniques such as semi-supervised learning could be
applied [30] to train a surrogate model on both evaluated and non-evaluated adversarial images.
Thereby using the surrogate to select predicted-optimal solutions for evaluation.

Another limitation is the DNN query budget assumption in our experiments. In practice, the available
query budget might be significantly lower. To address this limitation, future research could extend
the proposed method to incorporate surrogates or approximation models that guide the attack process,
using fewer DNN queries, similar to that of Williams et al. within the computational art field.

Lastly, the parameter tuning process in our work follows a conventional grid-search approach, which
limits the exploration of parameter combinations. Bayesian optimization methods could be employed
to automate the configuration of attack algorithms, leveraging Gaussian Process surrogate models to
handle the stochastic nature of the proposed method and guide the parameter search [34, 10, 9, 37].
This would provide a more efficient approach for determining the optimal parameter configuration.
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