Human spatiotemporal pattern learning as probabilistic program synthesis

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Tracey Mills, Josh Tenenbaum, Samuel Cheyette

Abstract

People are adept at learning a wide variety of structured patterns from small amounts of data, presenting a conundrum from the standpoint of the bias-variance tradeoff: what kinds of representations and algorithms support the joint flexibility and data-paucity of human learning? One possibility is that people "learn by programming": inducing probabilistic models to fit observed data. Here, we experimentally test human learning in the domain of structured 2-dimensional patterns, using a task in which participants repeatedly predicted where a dot would move based on its previous trajectory. We evaluate human performance against standard parametric and non-parametric time-series models, as well as two Bayesian program synthesis models whose hypotheses vary in their degree of structure: a compositional Gaussian Process model and a structured "Language of Thought" (LoT) model. We find that signatures of human pattern learning are best explained by the LoT model, supporting the idea that the flexibility and data-efficiency of human structure learning can be understood as probabilistic inference over an expressive space of programs.