
Supplementary Materials

Experiment and model source code, videos showing human and model predictions for all se-
quences, and examples of model hypotheses are available at https://github.com/temills/
spatiotemporal_patterns.

1 Supplementary Methods

Human Experiment

Below, we provide illustrations to show the experimental method in greater detail than provided in
the main text. Figure S1 shows the exact instructions shown to participants. Figure S2 illustrates the
experimental method with screenshots of a trial for the first three timepoints. A participant’s task
was to indicate where they thought the next point in a sequence would appear by clicking anywhere
within the gray region, which surrounded the previous point’s location. All the sequences used in the
task are shown in Figure S3.

Figure S1: Instructions shown to human participants before taking part in the task, by page (order
indicated by green arrows).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/temills/spatiotemporal_patterns
https://github.com/temills/spatiotemporal_patterns


Figure S2: Selected screenshots from a single trial of the experiment, annotated by timepoint. At
each timepoint, participants guessed the location of the next point in the sequence by clicking within
the shaded region surrounding the previous point.

41 42 43 44 45 46 47 48 49 50

31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

t=0

t=20

Figure S3: All sequence stimuli used in the experiment. Earlier points are shown in cooler colors
(blue) and later points in warmer colors (yellow).

Models

All models were implemented in Julia [1] using the probabilistic programming library Gen [2] for
inference. In Gen, the assumptions of the problem-domain are encoded in a probabilistic generative
function, which defines a data-generating process involving random choices. In each of our models,
the generative function includes random choices determining the synthesized programs, parameters,
and data (i.e. a sequence of points), and thus specifies a joint probability distribution over these.
During inference (implemented with Sequential Monte Carlo with Markov Chain Monte Carlo
rejuvenation as described in the main text) we then approximately sample from this distribution,
conditioned on data. Each model had 20 particles for SMC and used 100,000 MCMC rejuvenation
steps after each time point. Each model re-sampled noise, hyperpriors, and real-valued parameters
using Gaussian drift, with the program synthesis models also re-sampling program trees as described
in the main text.

Fixed-structure models

Bayesian Ridge Regression Model

In classical Ridge regression, the goal is to minimize the objective function ∥y−βX∥2
2 +α · ∥β∥2

2,
where y is some observed data, β is a set of weights, X are features (i.e., x, y, and t), and α is a
regularization term setting the penalty on large β coefficients. Bayesian Ridge regression allows the
hyperparameter on the weight regularization term, and the amount of uncertainty in the weights, to be
inferred from the data. This then takes the form p(y | λ, α,X) = N (y | β ·X , α). α and λ represent the
precision of the noise and the precision of the weights, respectively. These parameters are assumed to
be drawn from a Gamma distribution, with shape and rate (inverse scale) hyperparameters set to 1,

2



and fit jointly with the weight coefficients to the data. All x, y, and t values were standardized across
the entire sequence.

We also ran polynomial Ridge models incorporating higher order terms and interactions between the
features to capture any non-linear relationships in the data. The hyperparameters in these polynomial
models are learned exactly as in the linear case, with the addition of more terms in the β vector
corresponding to the additional features in the polynomial models. The 2nd-degree polynomial
Bayesian Ridge regression model incorporates squared terms of the features and their pairwise
interactions, so x2, y2, t2, x · y, x · t, and y · t are included in addition to the first degree terms. These
additional terms help the model capture relationships that might not be evident in the linear model.
The 3rd-degree model allows cubic terms for each feature, and interactions up to the third degree, i.e.
the terms x3, y3, t3, x2 · y, x · y2, x2 · t, x · t2, y2 · t, y · t2 and x · y · t are included in addition to the first
and second degree polynomial terms. In each case, regressions predicting subsequent x and y values
from previous x, y, and t values were done separately for x and y.

Non-Compositional GP Model

Our GP-NC model had four base kernels: Constant, Linear, Radial Basis Function, and Periodic.
Below, we provide the mathematical formulations for each of these kernels and detail their typical
use cases.

Constant Kernel

K(x,x′) = c2, (1)

where c is a constant.

Linear Kernel

The Linear kernel is a simple kernel that allows the GP model to predict a linearly varying function.
This kernel is useful when the underlying relationship between the inputs and outputs is assumed to
be linear, with constant variance. Given input vectors x and x′, the Linear kernel takes the form,

K(x,x′) = σ
2 +xT x′, (2)

where σ2 is a constant offset.

Radial Basis Function Kernel

The Radial Basis Function (RBF) kernel is one of the most commonly used kernels in GP regression.
The RBF kernel characterizes the similarity between input vectors x and x′ based on the Euclidean
distance between them. Mathematically, this takes the form,

K(x,x′) = σ
2 exp

(
− (x−x′)T (x−x′)

2l2

)
, (3)

where σ2 represents the overall variance of the data and l is the length-scale hyperparameter control-
ling how quickly the similarity between two data points decays as their distance increases.

Periodic Kernel

Lastly, the Periodic kernel is typically used to model periodic functions. It is a product of an
exponential and a sine-squared term. This kernel is particularly useful for data that exhibits cyclical
behavior, like weather patterns or seasonal trends. The Periodic kernel is defined as:

K(x,x′) = σ
2 exp

(
−

2sin2(π x−x′
p )

l2

)
, (4)

where p is the period of the function and l is the length-scale hyperparameter.

3



The GP-NC model assumed that there were two independent kernels for the x and y dimensions.
There was a uniform prior on each kernel and a uniform prior on an input dimension (x, y, or t) that it
operated over. There was also a uniform prior on noise added to the covariance matrix. To compute
the likelihood of the data given a kernel and its parameters, the sampled kernels are used to compute
covariance matrices between two dimensions, e.g. KX ,Y . The diagonals of these matrices determine
variance at a particular point, and the sampled noise value is added to the diagonal. Output values
are then sampled from multivariate normal distributions parameterized by µ⃗ = 0 and the covariance
matrices.

Program synthesis models

LoT Model
function GENERATIVEFUNCTION(T )

P∼ PCFG
θ∼ Uniform(−4,4)
s∼ Exp(0.5)
concat_move∼ Bernoulli(0.5)
µ⃗x, µ⃗y = RUNPROGRAM(P,θ,s,T,concat_move)
αx ∼ Gamma(10,10)
βx ∼ Gamma(1,1)
ηx ∼ Gamma(αx,βx)
αy ∼ Gamma(10,10)
βy ∼ Gamma(1,1)
ηy ∼ Gamma(αy,βy)
for t← 1 to T do

xt ∼N (µx,t ,(1/ηx)
0.5)

yt ∼N (µy,t ,(1/ηy)
0.5)

end for
end function

Here, the generative function specifies a joint probability distribution over the program, initial values
of the angle and speed internal state variables, noise parameters, and the x and y location of each
point in the sequence. The input to the function is T , the number of points in the sequence so far. In
the generative function, the initial program P is sampled from the PCFG as described in the main
text. We also sample initial values for the internal state variables θ and s which determine the starting
speed and heading for P. We also sample a concat_move variable as a parameter to RunProgram,
which returns the sequence of x and y locations (µ⃗x and µ⃗y ) specified by P and these parameters.

In RunProgram, P is evaluated as follows. As described in the main text, the internal state variables
angle (θθθ), where a value of 1 corresponds to 90 degrees, speed (sss), x and y positions (xxx, yyy), timepoint
(ttt), and number of program runs (nnn), are continuously tracked and updated. At the beginning of each
timepoint, xxx and yyy are set to the true x and y position of the point observed at the previous timepoint,
so that P determines the movement from the previous true point to the next point at each timepoint.
Specifically, each call in P either specifies the control structure of the program, updates the internal
state, or specifies the next point in the sequence and increments the current timepoint ttt with a Stay
or Move call.

When Stay is called, the current xxx and yyy values are added to µ⃗x and µ⃗y respectively. When Move is
called, xxx and yyy are updated according to the current speed and angle of movement, and these updated
values are added to µ⃗x and µ⃗y respectively.

P is wrapped in an outer Continue call which repeatedly runs the program, and increments the
internal state variable nnn, until µ⃗x and µ⃗y are of length T . Programs without a call to Move or Stay
will not produce output, and so µ⃗x and µ⃗x are set to [x0]T and [y0]T respectively. This idiosyncracy
means that otherwise reasonable programs which simply lack a Move or Stay call will be evaluated
as extremely unlikely, presenting a challenge for search. To combat this, we sample an additional
concat_move variable which, if set to true, concatenates an additional Move call to P. This allows
for more efficient exploration of the hypothesis space.

After running P, point locations are then sampled based on the output µ⃗x and µ⃗y and the sampled
noise hyperparameters (αx,βx,αy,βy) and parameters (ηx,ηy).

4



GP Structure-Learning model
function GENERATIVEFUNCTION(input)

n = LENGTH(input)
kernel_x∼ PCFG
noise_x∼ Uniform(0.001,0.1)
cov_mat_x = COMPUTECOVARIANCEMATRIX(kernel_x, input)+ In ∗noise_x
kernel_y∼ PCFG
noise_y∼ Uniform(0.001,0.1)
cov_mat_y = COMPUTECOVARIANCEMATRIX(kernel_y, input)+ In ∗noise_y

x1
x2
...

xn

∼N




0
0
...
0

, cov_mat_x




y1
y2
...

yn

∼N




0
0
...
0

, cov_mat_y


end function

Here, the generative function specifies a joint probability distribution over the kernel functions, noise
parameters, and output values (point locations) for both the x and y dimensions. The input is a
3-dimensional vector of previous timepoints, and x and y locations of points at those timepoints. For
each output dimension, the kernel is sampled from the PCFG as described in the main text. The
ComputeCovarianceMatrix call takes the sampled kernel function (which specifies the covariance
between a pair of input points), and the input, and computes a matrix of the covariance between every
pair of input points. The diagonal of this matrix is the variance at a particular point, and the sampled
noise value is added to the diagonal. Output values are then sampled from a multivariate normal
distribution parameterized by µ⃗ = 0 and the computed covariance matrix.

2 Supplementary Results

Amortized inference with LSTM

One challenge for program-learning as a theory of human inference is that it is, in general, quite
computationally expensive. For instance, the LoT model requires many thousands of samples to
learn many of the patterns tested in the paper. However, participants generally took only a couple
seconds to make predictions in our task. One natural question, therefore, is whether inference can be
amortized in, e.g., a recurrent neural network and whether this might actually provide a good account
of human behavior. To test this, we trained LSTMs [3] to predict spatiotemporal sequences under
two different training regimes and with varying amounts of data. The networks had 3 inputs (x, y,
t), 3 hidden LSTM layers with 48, 32, and 24 units, and 3 output units predicting the subsequent x
and y values at time t +1 and a standard deviation term σ representing the amount of uncertainty in
its prediction. The networks were trained to maximize the log likelihood of their predicted x and
y values at time t + 1, assuming that observations were drawn from normal distributions with its
predicted standard deviation σ.

We trained LSTMs on either samples from the LoT model or on parametric function samples; in both
cases they learned to predict sequences of length 20, as in the experiment. For the LoT model, we
sampled programs and parameters from the prior. The parametric functions had the form,

xt+1 = αx,0 +βx,1(t−αx,1)+βx,2(xt −αx,2)+βx,3(yt −αx,3)

yt+1 = αy,0 +βy,1(t−αy,1)+βy,2(xt −αy,2)+βy,3(yt −αy,3)

where the β coefficients are regressors on the previous x, y, and t values and the α parameters are
offsets. The β coefficients were each drawn from a N(0,1) and the α coefficients were drawn from
N(0,10). The x and y values were then standardized. Each model was trained with 1,000, 4,000, and

5



0.0

0.5

1.0

5 10 15
Timepoint

R
el

. e
rr

or
 (

tr
ai

ni
ng

)

(a) LSTM with LoT samples.

0.0

0.5

1.0

5 10 15
Timepoint

R
el

. e
rr

or
 (

tr
ai

ni
ng

)

Samples
1000
4000
16000

(b) LSTM with parametric function samples.

Figure S4: Relative error in predicting trianing set examples for (a) the LSTM trained on LoT model
samples and (b) the LSTM trained on parametric function samples.

16,000 examples (with 20 time-steps per example), with a 9:1 train/validation split. Each model was
trained for a maximum of 2,000 epochs with an early stopping rule applied to validation set accuracy.

The LSTMs learned to predict the training data fairly well, as evidenced by the learning curves shown
in Fig. S4, which show their mean relative error in predicting subsequent x/y values over the course of
each training sequence. There was a slight benefit of additional training examples in both cases. The
mean relative error across timepoints of the LSTM trained on LoT samples was 0.37, 0.27, and 0.25
across all examples for training sets of 1,000, 4,000, and 16,000 samples respectively. The LSTM
trained on parametric function samples had relative errors of 0.5, 0.22 and 0.18.

●
●

●

●

●

● ●
●

●

● ● ●
●

●

●
● ● ● ●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

● ● ● ●

0.0

0.5

1.0

5 10 15 20
Timepoint

R
el

. e
rr

or
 (

te
st

)

Samples
1000
4000
16000

(a) LSTM with LoT samples.

●
●

●

●

●

● ●
●

●

● ● ●
●

●

●
● ● ● ●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

● ● ● ●

0.0

0.5

1.0

5 10 15 20
Timepoint

R
el

. e
rr

or
 (

te
st

)

(b) LSTM with parametric function samples.

Figure S5: Relative error in predicting examples from the experiment for (a) the LSTM trained on
LoT model samples and (b) the LSTM trained on parametric function samples.

The models learned to predict the stimuli used in the experiment to some degree as well, though not
as well as the models considered in the main text, nor as well as people. Figure S5 shows their mean
relative error in prediction over the course of each sequence used in the experiment, clearly showing
some learning over time for the LSTM trained on LoT samples and for the parametric model when
trained with 16,000 examples. The LSTM trained on LoT samples had a mean relative error of 0.76
0.64, and 0.59 across all experimental stimuli when trained on 1,000, 4,000, and 16,000 examples.
The LSTM trained on parametric function samples had a relative errors of 1.07, 0.96 and 0.65.

6



Model fits

Table S1 shows the results of all models fit to the data, including the inferred parameters (motor
noise σm, attentional lapse rate θl , lapse noise σl), the log likelihood of the data, and the ∆AIC from
the best-fitting model (the LoT model). All models described in the main text fit better than all
the additional models only reported here. While it may be surprising that, e.g., the higher-degree
polynomial Ridge models fit worse than the linear-only model, they had strange biases toward
curvature that were not latent in the human data. So even though the third-degree polynomial Ridge
regression could fit most sequences by the final datapoint, it did not show human-like biases and error
patterns.

Model type σm θl σl LL ∆AIC
LSTM (Parametric) 0.55 0.52 1.50 -47868 52066
LSTM (LoT) 0.64 0.58 0.92 -44841 46012
Ridge (Deg. 3) 0.12 0.45 0.86 -49412 42272
Ridge (Deg. 2) 0.03 0.25 0.76 -33511 23352
GP-NC 0.05 0.32 2.28 -31592 19514
Ridge (Deg. 1) 0.01 0.20 1.96 -30187 16704
GP-SL 0.16 0.20 1.60 -28416 13162
LoT 0.01 0.24 1.74 -21835 0

Table S1: Model parameters, Log Likelihood, and ∆AIC from the worst-fitting model (top) to the
best (bottom).

Model predictions

Below, we show for each model all predictions for each sequence, as well as the relative absolute error
of these predictions. Videos showing human and model predictions side by side for each sequence
can be accessed at https://github.com/temills/spatiotemporal_patterns..

Figure S6: Absolute error relative to the distance from the previous point across all sequences tested
for the Ridge model (green) and human data (gray bars). The sequence corresponding to the data is
shown in the top-right of each panel.

7

https://github.com/temills/spatiotemporal_patterns


Figure S7: Absolute error relative to the distance from the previous point across all sequences tested
for the GP-NC model (blue) and human data (gray bars). The sequence corresponding to the data is
shown in the top-right of each panel.

Figure S8: Absolute error relative to the distance from the previous point across all sequences tested
for the GP-SL model (red) and human data (gray bars). The sequence corresponding to the data is
shown in the top-right of each panel.

Figure S9: Absolute error relative to the distance from the previous point across all sequences tested
for the LoT model (orange) and human data (gray bars). The sequence corresponding to the data is
shown in the top-right of each panel.

8



t=1

t=20

Figure S10: All predictions from the Ridge model for all sequences. Earlier points are cooler colors,
later points are warmer colors. The size of the circles indicates uncertainty (±1σ.)

t=1

t=20

Figure S11: All predictions from the GP-NC model, for all sequences. Earlier points are cooler
colors, later points are warmer colors. The size of the circles indicates uncertainty (±1σ.)

t=1

t=20

Figure S12: All predictions from the GP-SL model for all sequences. Earlier points are cooler colors,
later points are warmer colors. The size of the circles indicates uncertainty (±1σ.)

9



t=1

t=20

Figure S13: All predictions from the LoT model for all sequences. Earlier points are cooler colors,
later points are warmer colors. The size of the circles indicates uncertainty (±1σ.)

10



References
[1] Jeff Bezanson et al. “Julia: A fast dynamic language for technical computing”. In: arXiv preprint

arXiv:1209.5145 (2012).
[2] Marco F. Cusumano-Towner et al. “Gen: A General-purpose Probabilistic Programming System

with Programmable Inference”. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2019. Phoenix, AZ, USA: ACM,
2019, pp. 221–236. ISBN: 978-1-4503-6712-7. DOI: 10.1145/3314221.3314642. URL: http:
//doi.acm.org/10.1145/3314221.3314642.

[3] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

11

https://doi.org/10.1145/3314221.3314642
http://doi.acm.org/10.1145/3314221.3314642
http://doi.acm.org/10.1145/3314221.3314642

	Supplementary Methods
	Supplementary Results

