NIPS Proceedingsβ

Combinatorial Inference against Label Noise

Part of: Advances in Neural Information Processing Systems 32 (NIPS 2019) pre-proceedings

[PDF] [BibTeX] [Supplemental]

Authors

Conference Event Type: Poster

Abstract

Label noise is one of the critical sources that degrade generalization performance of deep neural networks significantly. To handle the label noise issue in a principled way, we propose a unique classification framework of constructing multiple models in heterogeneous coarse-grained meta-class spaces and making joint inference of the trained models for the final predictions in the original (base) class space. Our approach reduces noise level by simply constructing meta-classes and improves accuracy via combinatorial inferences over multiple constituent classifiers. Since the proposed framework has distinct and complementary properties for the given problem, we can even incorporate additional off-the-shelf learning algorithms to improve accuracy further. We also introduce techniques to organize multiple heterogeneous meta-class sets using $k$-means clustering and identify a desirable subset leading to learn compact models. Our extensive experiments demonstrate outstanding performance in terms of accuracy and efficiency compared to the state-of-the-art methods under various synthetic noise configurations and in a real-world noisy dataset.