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Abstract

Label noise is one of the critical sources that degrade generalization performance of
deep neural networks significantly. To handle the label noise issue in a principled
way, we propose a unique classification framework of constructing multiple models
in heterogeneous coarse-grained meta-class spaces and making joint inference of
the trained models for the final predictions in the original (base) class space. Our
approach reduces noise level by simply constructing meta-classes and improves
accuracy via combinatorial inferences over multiple constituent classifiers. Since
the proposed framework has distinct and complementary properties for the given
problem, we can even incorporate additional off-the-shelf learning algorithms
to improve accuracy further. We also introduce techniques to organize multiple
heterogeneous meta-class sets using k-means clustering and identify a desirable
subset leading to learn compact models. Our extensive experiments demonstrate
outstanding performance in terms of accuracy and efficiency compared to the state-
of-the-art methods under various synthetic noise configurations and in a real-world
noisy dataset.

1 Introduction

Construction of a large-scale dataset is labor-intensive and time-consuming, which makes it inevitable
to introduce a substantial level of label noise and inconsistency. This issue is aggravated if the
data collection relies on crowd-sourcing [1, 2] or internet search engines [3, 4] without proper
curation. More importantly, many real-world problems inherently involve a significant amount of
noise and it is extremely important to train machine learning models that can handle such a challenge
effectively. Figure 1 presents several noisy examples in WebVision benchmark [4], where training
examples are collected from Google and Flickr by feeding queries corresponding to the ImageNet
class labels. Although a moderate level of noise is sometimes useful for regularization, label noise is
a critical source of underfitting or overfitting. In the case of deep neural networks, models can easily
memorize a large number of noisy labels and, consequently, are prone to degrade their generalization
performance [5].

To tackle various kinds of label noise, existing mainstream approaches either attempt to filter noisy
examples out [6–11] or correct noisy labels based on the network predictions [12–15]. However,
these methods are similar to solving the chicken-and-egg problem and their unstable on-the-fly noise
recognition process may result in poor generalization performance. On the other hand, [16–21]
assume the correct labels to be latent and learn the networks inferring the latent correct labels by
estimating noise transition matrices. Although these methods estimate the noise injection process
directly, they are also suboptimal when the network is capable of adapting to label noise as discussed
in [10].

While the prior approaches typically focus on developing noise-resistant training algorithms given
noise levels, our algorithm takes a totally different perspective of reducing noise level and learning a
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Figure 1: Examples of 259-pomeranian class in WebVision [4]. In addition to clean samples, the
dataset contains closed- and open-set noises, where the examples with closed-set noise are mislabeled
with known classes while the ones with open-set noise are associated with unknown class labels.

representation robust to label noise. In our framework, we automatically generate multiple coarse-
grained meta-class sets, each of which constructs a heterogeneous partition of the original class set.
Then, we train classifiers on individual meta-class sets and make the final prediction using an output
combination of the classifiers. Note that the combination process allows us to uniquely identify
the original classes despite the coarse representation learning on meta-class spaces. Learning on
meta-class spaces actually reduces the level of label noise because multiple classes in an original
class space collapse to a single meta-class and the label noise within the same meta-class becomes
invisible on the meta-class space.

The contribution of this paper is three-fold; (1) we successfully reduce the amount of label noise by
constructing meta-classes of multiple base classes; (2) we propose a novel combinatorial classification
framework, where inference on the original class space is given by combining the predictions on
multiple meta-class spaces; (3) we demonstrate the robustness of the proposed method through
extensive controlled experiments as well as the evaluation on a real-world dataset with label noise.

The rest of this paper is organized as follows. Section 2 reviews previous approaches against datasets
with label noise and other related techniques. Then, we formally describe the proposed compositional
classification method, and demonstrate the effectiveness of our method in Section 3 and 4, respectively.
Finally, we conclude our paper in Section 5.

2 Related Work

One common approach to learning with noisy data is to correct or filter out noisy examples during
training [6–15, 22–25]. Existing methods adopt their own criteria to identify the noisy samples.
There exist several techniques to employ the confidence scores of models as the signal of noise in
[11–14] while [8] incorporates a contrastive loss term to iteratively identify noisy samples. Deep
bilevel learning [9] attempts to find reliable mini-batches based on the distances between the mini-
batches in training and validation datasets. Multiple networks have often been adopted to identify
noisy examples. For example, two networks with an identical architecture are jointly trained to
identify noisy samples in each batch [6, 11] whereas a separate teacher network is employed to
select samples for training a student network. Contrary to the approaches making hard decisions
on noisy sample selection, there are a handful of algorithms relying on the soft penalization of
potentially noisy examples by designing noise-robust loss functions [10, 23], using knowledge
distillation [24] and adding regularizers [22]. Although these methods are often motivated by intuitive
understanding of classification models, their ad-hoc procedures often lack theoretical support and
hamper reproducibility.

Another line of methods estimates a noise transition matrix capturing transition probabilities from
correct labels to corrupted ones [16–21]. Some of them [16–18] adopt the standard backpropagation
to estimate the transition matrix and train the network simultaneously while a pretrained network is
often used for the transition matrix estimation [19]. To improve the quality of the estimated transition
matrices, additional clean data [21] or manually defined constraints [20] are sometimes integrated
during the matrix estimation process.

Although all these existing approaches cover various aspects of training with noisy data, they typically
assume that the noise-level of a dataset is irrevocable and therefore focus on developing algorithms that
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Figure 2: Motivation and concept of combinatorial classification. (left) Empirical noise-level
reduction by use of meta-class labels on CUB-200 with closed-set noise; the noise rates in the meta-
class level show the average of all meta-class sets. (right) Illustration of combinatorial classification
with two binary meta-class sets on four original classes. By combining the coarse-grained meta-
classes, it is possible to predict fine-grained original class labels.

avoid overfitting to a noisy training set by identifying noisy examples or modeling noise distribution.
In contrast, we propose a novel output representation method that directly reduces the noise-level of
a given dataset, and a model that predicts class labels based on the proposed representations.

The proposed combinatorial classification solves the target problem by combining solutions of
multiple subproblems encoded by class codewords and there are several related methods in this aspect.
Product quantization [27, 28] measures distances in multiple quantized subspaces and combines them
to perform the approximate nearest neighbor search in the original space. A recently proposed an
image geolocalization technique by classification achieves the fine-grained quantization by combining
multiple coarse-grained classifications [29], while a similar approach is proposed for metric learning
for retrieval tasks [30]. Unlike these works targeting regression or retrieval tasks on continuous
spaces, our approach deals with a classification problem on a discrete output space. Ensemble
methods [31–37] also have the similar concept to our algorithm but are different in the sense that
their constituent models have the common output space. One of the most closely related work
is the classification by error-correcting output code [26]. This technique combines the results of
binary classifiers to solve multi-class classification problems and proposes deterministic processes to
generate and predict the binarized codewords based on Hamming distance. In contrast, we generate
codewords by exploiting the semantics of the original classes and combine the predicted scores to
construct the compositional classifier robust to label noise.

3 Combinatorial Classification

3.1 Class Codewords

As in the ordinary classification, our goal is to predict a class label y ∈ C given an input x, where
C = {c1, . . . , cK} is a set of K disjoint classes. Unlike conventional classification approaches that
directly predict the output class y, our model estimates y by predicting its corresponding unique
codeword. To construct the class codewords, we define M meta-class sets, each of which is given
by a unique partitioning of C. Specifically, each meta-class set denoted by Cm (m = 1, . . . ,M ) has
K ′(� K) meta-classes, i.e., Cm = {cm1 , . . . , cmK′}, where multiple original classes are merged into a
single meta-class, which results in a coarse-grained class definition. Then, each class ci is represented
by a M -ary codeword, c1i1c

2
i2
. . . cMiM , where cmim corresponds to a meta-class to which ci belongs in a

meta-class set Cm.

When training data have label noise, classification on a coarse-grained meta-class set naturally reduces
noise level of the dataset. Formally, let η(D̂) be the noise level of a dataset D̂ = {(xi, ŷi)}Ni=1, which
is given by

η(D̂) = ED̂[1(y 6= ŷ)] =
1

N

N∑
i=1

1(yi 6= ŷi), (1)

where ŷi means a label potentially corrupted from a clean label yi and 1 is an indicator function.
Although two examples xi and xj belong to the same class but the label of xj is corrupted from
yj(= yi) to ŷj , the two classes corresponding to yi and ŷj can be merged into the same meta-class,
which removes the label noise in the meta-class level. Consequently, the noise level with the meta-
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class representations is lower than that with the original class space, i.e., η(D̂m) ≤ η(D̂), where
D̂m = (xi, ŷ

m
i )

N
i=1 is the dataset associated with meta-class labels in Cm. In Figure 2(left), we make

empirical observations of the noise-level reduction on CUB-200 with two different noise injection
schemes1. The noise levels are significantly reduced regardless of noise-types by converting the
original class spaces into meta-class representations.

Although a coarse-grained meta-class representation reduces noise level, it is not capable of distin-
guishing the base classes in the original class space C. We resolve this limitation by introducing
multiple heterogeneous meta-class sets and exploiting their compositions. Even if multiple classes
are collapsed to a single meta-class within a meta-class set, it is possible to provide a unique class
codeword to each of the original classes by using a sufficiently large number of meta-class sets. In
this way, we convert noisy labels in D̂ to partially noisy codewords.

3.2 Classification with Class Codewords

Given noise-robust class codewords defined above, we now discuss the classification method that
predicts the class codewords to identify the class label y. Unlike ordinary classifiers directly predicting
the class label on C, we construct M constituent classifiers, each of which estimates a distribution on
a meta-class set Cm (m = 1, . . . ,M ), and combine their predictions to obtain class labels on C. This
process is referred to as combinatorial classification and is illustrated in Figure 2(right).

Inference A constituent classifier estimates the conditional distribution P (cmk |x) on a meta-class
set Cm. GivenM constituent classifiers, we obtain the conditional probability of ck ∈ C by combining
the predictions of constituent classifiers as follows:

P (ck|x) =
∏M
m=1 P (meta(ck;m)|x)∑K

j=1

∏M
m=1 P (meta(cj ;m)|x)

, (2)

where meta(ck;m) returns the meta-class label containing the base class ck in the m-th meta-class
set. The denominator in Eq. (2) is the normalization term deriving

∑K
k=1 P (ck|x) = 1.

Training We train our model by minimizing the sum of negative log-likelihoods with respect to the
ground-truth meta-class labels meta(y;m) that contain the ground-truth label y ∈ C, i.e.,

−
M∑
m=1

logP (meta(y;m)|x). (3)

This objective encourages the constituent classifiers to maximize the prediction scores of the true
meta-classes. Our algorithm employs the objective in Eq. (3) even though the following objective,
minimizing the negative log-likelihood of the ground-truth class label y, is also a reasonable option:

− logP (y|x) = −
M∑
m=1

logP (meta (y;m)|x) + log

K∑
k=1

M∏
m=1

P (meta(ck;m)|x). (4)

Although this objective is directly related to the inference procedure in Eq. (2), it turns out to be
not effective. Note that the second term of the right hand side in this equation corresponds to the
denominator in Eq. (2), and penalizes the scores of the classes other than the true one, i.e., C \ {y}.
Since a ground truth meta-class may contain non-ground-truth original class labels, the penalty
given to these non-ground-truth class labels can be propagated to the ground-truth meta-classes.
Consequently, the optimization of each constituent classifier becomes more challenging.

Deep combinatorial classifier We implement our model using a deep neural network with a shared
feature extractor and M parallel branches corresponding to the individual constituent classifiers.
Since the shared feature extractor receives the supervisory signal from all the M classifiers, we scale
down the gradients of the shared feature extractor by a factor of M for backpropagation. Note that
our approach uses the exactly same number of parameters with a flat classifier in the feature extractor
and its model size is rather smaller in total even with multiple network branches. This is mainly
because the number of meta-classes is much less than the number of base classes (K ′ � K) and,
consequently, each classifier requires fewer parameters.

1Refer to Section 4.2 for noise injection configurations.
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3.3 Configuring Meta-class Sets

To implement our method, one needs to define heterogeneous meta-class sets. A naive approach for
determining a meta-class set configuration is to randomly assign each class to one of meta-classes
in a meta-class set. However, this method may result in large intra-class variations by grouping
base classes without common properties. We instead sample M meta-class sets by running k-means
clustering algorithms with random seeds. Since the clustering algorithm often results in redundant
meta-class sets despite the random seeds, we diversify the clustering results by randomly sampling
Q-dimensional axis-aligned subspaces of class representation vectors. We obtain class embedding
from the weights of the classification layer in a convolutional neural network, which is fine-tuned
using noisy labels in the original class space.

While the clustering-based method is sufficiently good at mining reasonable meta-class sets, we can
further optimize the configurations of meta-class sets by searching for their combinations. To achieve
this, we oversample candidate meta-class sets, and search for the optimal subset using a search agent
trained by reinforcement learning. Given a set of all candidate meta-class sets P = {Cm}Mm=1, the
search agent predicts a probability distribution over a binary selection variable um for each candidate
meta-class set. We train the agent by a policy gradient method, specifically REINFORCE rule [38],
and iteratively update the parameters by the empirical approximation of the expected policy gradient,
which is given by

5θJ (θ) =
1

S

S∑
s=1

M∑
m=1

5θ logP (u(s)m ; θ)(R(s) −B), (5)

where S is the number of meta-class set combinations2, θ is a model parameter of the search agent,
R(s) is the reward obtained by the s-th sample, and B is the baseline injected to reduce the variance.
Our main goal is to select the optimal collection of meta-class sets in terms of accuracy on the
validation dataset, but we employ in-batch validation accuracy as the primary reward for training
efficiency. In addition, we encourage the number of selected meta-class sets to be small in each
combination by providing the negative reward in proportion to its size. Then, the total reward for the
selection is given by

R = Racc − α
M∑
i=1

ui, (6)

whereRacc is the in-batch validation accuracy and α is a hyper-parameter balancing the two terms.
Finally, we set the baseline to the average reward of the batch samples, i.e., B = 1

S

∑
sR(s). At

every T epoch during training, we evaluate all the S samples on the entire validation set and store the
meta-class set combination with the highest accuracy. At the end of the training, the agent returns the
best meta-class set combination among the stored ones. According to our empirical observations,
the search cost by RL is just as much as the cost for training a classifier. Note that we employ a
simple two-layer perceptron to optimize the agent, which is also helpful to reduce the computational
complexity together with the in-batch validation strategy described above.

3.4 Discussions

In addition to the benefit of noise level reduction, the coarse-grained meta-class representation
also brings several desirable characteristics. The meta-classes naturally introduce some inter-class
relationships to the model and lead to better generalization performance by grouping multiple classes
that potentially have shared information. Moreover, the representation learning based on meta-
classes makes the trained model more robust to data-deficiency since each coarse-grained meta-class
obviously contains more training examples compared to the original classes. As multiple meta-class
sets construct a large number of class codewords by their Cartesian product, a small number of
constituent classifiers are sufficient to recover the original class set and the proposed method can
reduce the number of parameters. Finally, since the proposed method utilizes multiple constituent
classifiers, it brings some ensemble effects and lead to accuracy improvement.

2Each combination is composed of the meta-class sets and each of the meta-class sets is selected by um.
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(a) Standard classifier

43.3% 78.7% 100%

(b) Combinatorial classifiers with one, two and three meta-class sets

Figure 3: Sample results from (a) a standard classifier and (b) combinatorial classifiers on the
examples from a 2D Gaussian mixture model with five components. The accuracy is shown at the
top-right corner in each case. For the combinatorial classifiers, we gradually add meta-classifiers
one-by-one. Gray dots correspond to noisy samples with random labels while purple dashed and
black solid lines represent decision boundaries on clean and noisy datasets, respectively.
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Figure 4: Example noise transition matrices with eight output classes. For open-set noise, four classes
are used as target classes while the remaining four classes are reserved for noisy labels.

4 Experiments

4.1 Experiments on a Toy Set

To illustrate and visualize the effectiveness of the proposed method, we build a toy set that contains
150 clean samples drawn from a two-dimensional Gaussian mixture model with five components. To
simulate a dataset with significant noise, we generate 300 noisy examples from a random Gaussian
distribution with a larger variance and assign noisy labels selected from a uniform distribution.
Figure 3 demonstrates the decision boundaries of a standard method and the proposed combinatorial
classifiers with their accuracies. Our model is based on logistic regressors on three binary meta-class
sets, which are gradually added one by one as shown in Figure 3b. With these results, we put
emphases on the following three observations. First, the combinatorial classifier becomes capable
of identifying all original classes as we add more meta-class sets. The decision boundaries and
accuracies also illustrate the noise-robustness of the our method. Finally, the proposed technique
requires fewer parameters (three weight vectors in the logistic regressors) than the standard classifier
(five weight vectors corresponding to each class).

4.2 Evaluation on CUB-200

Experimental settings We conduct a set of experiments on Caltech-UCSD Birds-200-2011 (CUB-
200) dataset [39] with various noise settings. CUB-200 is a fine-grained classification benchmark
with 200 bird species and contains ∼30 images per class in the training and validation sets. Note that
CUB-200 is more natural and realistic compared to the simple datasets—MNIST and CIFAR—used
for the evaluation of many previous methods.

We consider both open- and closed-set noise artificially injected to training examples. The open-set
noise is created by giving one of the target labels to the images sampled from unseen categories. To
simulate open-set noise, we use 100 (out of 200) classes as the target labels and the remaining 100
classes assume to be unknown. Noise level η controls the ratio between clean and noisy examples.
On the other hand, examples with the closed-set noise have wrong labels within the target classes
and we use all 200 classes in CUB-200 as the target labels. For both types of noise, we use two label
corruption schemes: uniform transition and nearest label transfer. The uniform transition injects label
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Table 1: Accuracies [%] on CUB-200 with different levels of open-set noise.
Clean dataset

(η = 0)
Moderate noise level High noise level

Methods Uniform Nearest Uniform Nearest
Standard 80.57 ± 0.37 73.37 ± 0.34 77.14 ± 0.27 70.04 ± 0.71 75.45 ± 0.50
Decoupling [6] 79.32 ± 0.83 71.42 ± 0.70 76.07 ± 0.40 66.79 ± 0.44 74.80 ±0.46
F-correction [19] 80.66 ± 0.60 73.55 ± 0.70 77.03 ± 0.29 69.76 ± 0.59 75.52 ± 0.32
S-model [18] 80.75 ± 0.37 73.52 ± 0.47 77.13 ± 0.97 70.06 ± 0.65 75.59 ± 0.33
MentorNet [7] 80.39 ± 0.36 73.53 ± 0.56 77.27 ± 0.49 70.34 ± 0.42 75.75 ± 0.62
q-loss (q = 0.3) [10] 81.55 ± 0.52 75.04 ± 0.46 78.09 ± 0.40 71.84 ± 0.95 76.32 ± 0.65
q-loss (q = 0.5) [10] 82.19 ± 0.58 77.51 ± 0.53 78.58 ± 0.46 75.40 ± 0.66 76.47 ± 0.34
q-loss (q = 0.8) [10] 75.15 ± 1.96 71.02 ± 1.68 47.40 ± 1.16 67.16 ± 1.29 32.60 ± 2.38
Co-teaching [11] 80.90 ± 0.13 75.37 ± 0.54 77.41 ± 0.36 74.02 ± 0.29 75.57 ± 0.22
CombCls 82.80 ± 0.36 79.38 ± 0.83 79.28 ± 0.52 79.19 ± 0.29 77.95 ± 0.53
CombCls+Co-teaching 82.86 ± 0.25 79.93 ± 0.44 80.22 ± 0.31 80.50 ± 0.61 78.26 ± 0.43

Table 2: Accuracies [%] on CUB-200 with different levels of closed-set noise.
Clean dataset

(η = 0)
Moderate noise level High noise level

Methods Uniform Nearest Unifrom Nearest
Standard 79.58 ± 0.18 63.65 ± 0.26 65.21 ± 0.42 42.35 ± 0.50 47.70 ± 0.41
Decoupling [6] 77.79 ± 0.23 62.52 ± 0.23 66.24 ± 0.53 43.91 ± 0.52 51.92 ± 0.18
F-correction [19] 80.01 ± 0.42 63.81 ± 0.16 64.69 ± 0.21 42.23 ± 0.54 48.00 ± 0.46
S-model [18] 79.42 ± 0.27 63.08 ± 0.74 64.90 ± 0.29 42.17 ± 0.70 48.01 ± 0.47
MentorNet [7] 79.78 ± 0.20 68.03 ± 0.32 65.49 ± 0.14 47.74 ± 1.64 48.25 ± 0.39
q-loss (q = 0.3) [10] 80.41 ± 0.36 68.52 ± 0.51 66.34 ± 0.25 53.18 ± 0.49 49.30 ± 0.35
q-loss (q = 0.5) [10] 80.76 ± 0.38 75.24 ± 0.31 67.49 ± 0.56 60.89 ± 0.32 49.28 ± 0.57
q-loss (q = 0.8) [10] 40.70 ± 2.25 29.31 ± 1.14 24.98 ± 1.61 17.67 ± 1.06 15.95 ± 0.65
Co-teaching [11] 79.74 ± 0.14 68.21 ± 0.35 66.24 ± 0.30 52.72 ± 0.56 49.81 ± 0.19
CombCls 81.36 ± 0.23 71.75 ± 0.24 68.35 ± 0.35 51.90 ± 0.35 52.00 ± 0.22
CombCls+Co-teaching 81.52 ± 0.47 75.30 ± 0.10 70.46 ± 0.31 62.77 ± 0.66 52.49 ± 0.79

noise by selecting a wrong label uniformly while the nearest label transfer determines the label of
a noisy example using the nearest example with a different label to simulate confusions between
visually similar classes. For the nearest neighbor search, we employ the features of examples in a
pretrained network on the clean dataset. For both noise types, we test moderate and high noise levels
(η = 0.25 and η = 0.50). Figure 4 presents sample noise transition matrices for all cases.

We use ResNet-50 as the backbone network for all the methods and initialize the parameters of
the feature extractor using the pretrained weights on ImageNet [40] while the classification layer(s)
are initialized randomly. The entire network is fine-tuned for 40 epochs by a mini-batch stochastic
gradient descent method with batch size of 32, momentum of 0.9 and weight decaying factor of
5 × 10−4. The initial learning rate is 0.01 and decayed by a factor of 0.1 at epoch 20 and 30. For
combinatorial classification, we use 100 binary meta-class sets (K ′ = 2) generated by performing
k-means clustering with Q = 50. All models are evaluated on clean test sets with five independent
runs. We report the best test accuracy across epochs for all models for comparisons since the learning
curves of individual methods may be different and reporting accuracies at a particular epoch may be
unfair. However, we also note that our approach still outperforms others even when fixing the number
of epochs in a wide range.

Results The proposed combinatorial classification (CombCls) is compared with the following
state-of-the-art methods including Decoupling [6], F-correction [19], S-model [18], MentorNet [7],
q-loss [10] and Co-teaching [11], in addition to an ordinary flat classifier (Standard).

Table 1 and 2 present results on CUB-200 dataset in the presence of open- and closed-set noises,
respectively. We first observe that CombCls outperforms Standard on noise-free setting (η = 0)
in both cases. This is partly because our combinatorial classifier learns useful information for
recognition by modeling inter-class relationships and exploits ensemble effects during inference as
discussed in Section 3.4. These results imply that our method is also useful regardless of noise-level
and achieves outstanding classification accuracy. Moreover, the proposed algorithm identifies a
compact model compared to the other methods. The baseline models use K weight vectors in their
classification layers, where each vector corresponds to a base class; the baselines have 100 and 200
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Table 3: Results of ablation studies. Accuracies [%] of (left) combinatorial classifier trained on highly
noisy datasets with meta-class sets generated from datasets with different levels of uniform noise and
(right) standard classifier with feature extractor of CombCls in various noise configurations.

Dataset used for Open-set Closed-setmeta-class set generation
Clean 77.82 45.40
Moderate noise level 77.58 50.22
High noise level 79.19 51.90

Standard Standard
+CombFeat

Open-set Uniform 70.04 78.48
Nearest 75.45 77.40

Closed-set Uniform 42.35 53.83
Nearest 47.70 52.52

Table 4: Results of combinatorial classification using different meta-class set configurations on the
datasets with high noise level. Acc. means accuracy [%] and Param. is ratio of model parameters in
each method with respect to that of the Standard.

Open-set noises Closed-set noises
Uniform Nearest Unifrom Nearest

Methods Meta-class set Acc. Param. Acc. Param. Acc. Param. Acc. Param.
Standard N/A 70.04 1.00 75.45 1.00 42.35 1.00 42.84 1.00
CombCls Random 78.66 1.00 76.75 1.00 46.98 0.50 48.55 0.50

Clustering 79.19 1.00 77.95 1.00 51.90 0.50 52.00 0.50
Clustering+Search 79.98 0.42 78.35 0.44 54.52 0.41 52.43 0.29

weight vectors for open- and closed-set noise cases. Note that CombCls consists of M(= 100) binary
classifiers in both cases and saves memory substantially.

Our algorithm outperforms other methods in the presence of noise and the accuracy gain is even larger
than noise-free case. It achieves the state-of-the-art accuracy in most settings. Note that q-loss with
the optimal q value is better than our method when uniform closed-set noise is injected. This is mainly
because such problem configurations are aligned well to the assumption behind q-loss algorithm [10].
However, real noise distributions are unlikely to follow uniform distributions. For instances, we
observe significantly more open-set noise than closed-set one in a real-world noisy dataset as shown in
Figure 1. Moreover, the performance of q-loss highly depends on the choice of q and an inappropriate
choice of q value degrades performance significantly because the theoretical noise-robustness and
training stability vary with respect to q values; the optimal q value differs across datasets, e.g.,
q = 0.5 for CUB-200 and q = 0.3 for WebVision (shown in Section 4.3). In contrast, our algorithm
reduces the level of noise effectively regardless of hyper-parameters by introducing coarse-grained
meta-class sets. Another observation is that our approach is unique and complementary to other
methods. As a result, it is straightforward to further improve accuracy by combining both our method
and Co-teaching [11] (CombCls+Co-teaching). Note that Co-teaching trains two networks to filter
out noisy examples by cross referencing each other, which employs a completely different approach
from the proposed one to tackles label noise. Noticeably, CombCls+Co-teaching achieves the best
accuracy through the collaboration in all noise configurations and almost recovers the accuracy of
Standard on the clean dataset in Table 1.

For further understanding, we train the proposed classifier on the datasets with high noise level while
pretraining the network for the clustering-based meta-class set generation on another dataset with
different noise levels. Interestingly, using the dataset with high noise level in the meta-class sets
generation gives higher accuracy compared to the cleaner datasets as shown in Table 3(left). This
implies that the meta-class sets generated from a noisy dataset reflect the noise distribution and help
the combinatorial classifiers generalize better on the noisy dataset. We observe similar tendencies
with other combinations of noise levels, where the meta-class sets generated with the same noise
distribution result in higher accuracies. Also, we construct a Standard network and initialize its
feature extractor using a trained CombCls model. Then, we fine-tune its classification layer while
the weights of the feature extractor are fixed. This network (Standard+CombFeat) is compared to
Standard in Table 3(right). Using the feature extractor of the combinatorial classifier, the accuracy of
Standard is improved with a significant margin in all noise settings. This signifies that the proposed
model learns a noise-robust feature extractor.

Next, we evaluate the proposed method with different meta-class set configurations and show the
results in Table 4. We compare randomly configured meta-class sets (Random) with the proposed
clustering based ones (Clustering). In addition, we also evaluate performance of the meta-class sets
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Figure 5: Accuracy [%] of combinatorial classifiers with open-set
uniform noise (η = 0.5) by varying K ′ and M .

Table 5: Results on WebVision.
Methods Acc. [%]
Standard 79.82
Decoupling [6] 79.38
F-correction [19] 80.96
S-model [18] 81.36
MentorNet [7] 80.46
q-loss (q = 0.3) [10] 82.18
Coteaching [11] 83.06
CombCls 83.14
CombCls+Search 83.26
CombCls+Coteaching 84.14

search method (Clustering+Search) proposed in Section 3.3. For the meta-class set search, we reserve
a half of training set as the validation set to train the search agent, compute the in-batch accuracy
with 32 images, and sample 100 meta-class set combinations per batch. The number of candidate
meta-class sets is 600 and α in Eq. (6) is set to 3×10−4. Note that the search process does not require
any clean data since the agent is trained on the noisy held-out data extracted from the training set.
After the search process, we retrain the combinatorial classifier with the entire training set including
the validation data. As shown in Table 4, the combinatorial classifier outperforms the baseline
(Standard) even with randomly constructed meta-class sets. Our clustering-based algorithm brings
additional improvement while employing the meta-class set search technique boosts the accuracy
even further. Note that the meta-class sets configured by the search agent not only improves the
accuracy of CombCls but also reduces the number of parameters as the meta-class sets are optimized
to maximize the accuracy and minimize the number of meta-class sets.

Finally, we investigate the effects of K ′ and M in our method. Figure 5 shows the effects of K ′ and
M on CUB-200 with open-set uniform noise (η = 0.5). Our models outperform the baseline even
with a fairly small number of meta-class sets regardless of K ′. In particular, the model with K ′ = 2
reduces noise level most effectively and achieve the best accuracy among the ones with the same
number of parameters, which are depicted by diamond markers in the plot. We observe the same
tendency in the experiments with other noise settings.

4.3 Experiments on WebVision

We also conduct experiments on a real-world noisy benchmark, WebVision [4]. This dataset is
constructed by collecting 2.4 million web images retrieved from Flickr and Google using manually
defined queries related to 1,000 ImageNet classes. While the training set includes significant amount
of noise, the benchmark provides a clean validation set for evaluation. We use a subset of WebVision
dataset for our experiment, which contains all images from 100 randomly sampled classes. The
experimental settings are identical to the ones described in the previous section except for the
optimization parameters; we adopt the parameters of the ImageNet training setting in [41].

Table 5 presents accuracies of all compared methods and the proposed model shows competitive
performance. As in the experiments on CUB-200, our method benefits from the combination with
Co-teaching and achieves the best accuracy. We also find that applying the meta-class sets search
makes additions accuracy gain. Moreover, it reduces the model complexity and uses only 64% of the
parameters in the classification layers compared to the baselines and the proposed model without the
meta-class sets search.

5 Conclusion

We proposed a novel classification framework, which constructs multiple classifiers over heteroge-
neous coarse-grained meta-class sets and perform combinatorial inferences using their predictions
to identify a target label in the original class space. Our method is particularly beneficial when the
dataset contains label noise since the use of the coarse-grained meta-class representations reduces
noise level naturally. We also introduced meta-class set search techniques based on clustering and
reinforcement learning. The extensive experiments on the datasets with artificial and real-world noise
demonstrated the effectiveness of the proposed method in terms of accuracy and efficiency.
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