IODA: Instance-Guided One-shot Domain Adaptation for Super-Resolution

Zai-Zuo Tang, Yu-Bin Yang

Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

The domain adaptation method effectively mitigates the negative impact of domain gaps on the performance of super-resolution (SR) networks through the guidance of numerous target domain low-resolution (LR) images. However, in real-world scenarios, the availability of target domain LR images is often limited, sometimes even to just one, which inevitably impairs the domain adaptation performance of SR networks. We propose Instance-guided One-shot Domain Adaptation for Super-Resolution (IODA) to enable efficient domain adaptation with only a single unlabeled target domain LR image. To address the limited diversity of the target domain distribution caused by a single target domain LR image, we propose an instance-guided target domain distribution expansion strategy. This strategy effectively expands the diversity of the target domain distribution by generating instance-specific features focused on different instances within the image. For SR tasks emphasizing texture details, we propose an image-guided domain adaptation method. Compared to existing methods that use text representation for domain difference, this method utilizes pixel-level representation with higher granularity, enabling efficient domain adaptation guidance for SR networks. Finally, we validate the effectiveness of IODA on multiple datasets and various network architectures, achieving satisfactory one-shot domain adaptation for SR networks. Our code is available at https://github.com/ZaizuoTang/IODA.

10.52202/079017-3723