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Abstract

Accuracy is a commonly adopted performance metric in various classification tasks,
which measures the proportion of correctly classified samples among all samples.
It assumes equal importance for all classes, hence equal severity for misclassifica-
tions. However, in the task of emotional classification, due to the psychological
similarities between emotions, misclassifying a certain emotion into one class may
be more severe than another, e.g., misclassifying ‘excitement’ as ‘anger’ apparently
is more severe than as ‘awe’. Albeit high meaningful for many applications, metrics
capable of measuring these cases of misclassifications in visual emotion recogni-
tion tasks have yet to be explored. In this paper, based on Mikel’s emotion wheel
from psychology, we propose a novel approach for evaluating the performance in
visual emotion recognition, which takes into account the distance on the emotion
wheel between different emotions to mimic the psychological nuances of emotions.
Experimental results in semi-supervised learning on emotion recognition and user
study have shown that our proposed metrics is more effective than the accuracy
to assess the performance and conforms to the cognitive laws of human emotions.
The code is available at https://github.com/ZhaoChenxi-nku/ECC.

1 Introduction
"The best and most beautiful things in the world cannot be seen or even touched.
They must be felt with the heart." -Helen Keller

Emotion, as a complex state of feeling that results in physical and psychological changes and in-
fluences thoughts and behavior, involves subjective experiences, physiological arousal, cognitive
appraisal and behavioral expressions [33]. Emotional similarity is a significant characteristic of
emotions, revealing the commonalities among diverse emotional states in their essence, modes of
expression, and influencing factors. And the essence of emotion can be explored through under-
standing the hierarchical nature of human cognitive processes. The Reverse Hierarchy Theory [14]
in neuroscience suggests that, instead of exhibiting absolute object classification ability, humans
first recognize coarse-grained categories and then proceed to identify finer-grained detailed infor-
mation [21, 22]. This process involves comparing with prior information to make a comparative
classification [10]. Under the same cognitive mechanism, both emotion recognition and object
recognition follow a similar pattern of recognition [24], i.e., progressing from global to local, and
from coarse-grained to fine-grained identification processes. And such emotional cognitive process
is often characterized by the term Emotion Granularity in psychology [31, 18], where it involves
the degree of nuance with which individuals can perceive. It also implies that there exists relative
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Figure 1: (a) Different misclassification situations can not be treated equally. It is better to misclassify
an image labeled as ‘excitement’ as ‘awe’ than to misclassify it as ‘anger’. (b) Although the ACC of
the sentiment classification algorithm has been significantly improved on FI [50] in recent years, its
Emotional Misclassification Confidence(EMC) has decreased significantly.

proximity between different emotions. For instance, belonging to positive emotions, the similarity
between excitement and awe is greater than that between excitement and anger. This proximity is
often associated with a misclassification-similar phenomenon in psychology referred to as ‘affective
biased attention’, which is the tendency to pay more attention to some emotions than others. In
complex psychological conditions, people tend to show negative bias compared to positive informa-
tion, that is, they tend to use more negative information [36]. Though the emotion similarity and
affective bias have been considered when evaluating cognitive ability for humans in psychology,
the measurement of such ability for emotion recognition methods [19, 8, 25] in computer vision
field still remains within the framework of the ordinary classification task. They primarily focus on
employing global representation of objects [19], language prompts [8] or a multi-stage perception
(entity, attribute and emotion) model [25] to improve the number of correctly classified samples,
but totally ignore the influence (or severity) of different misclassifications caused by the similarity
between emotions. As shown in Fig. 1(a), the relative distances between emotions are different. And
after testing with the recent representative emotion classification methods in terms of both accuracy
and severity of misclassification in Fig. 1(b), we observed that, although the classification accuracy
has been improved to a high level, the severity of misclassification stayed at the same level or even
worse. Therefore, metrics that aligns more closely with psychological models by taking the emotional
similarity and the severity of misclassification into account are necessary for the visual emotion
recognition task.

Studies on the misclassification for other tasks can be traced back to the early ‘cost-sensitive’ problem,
where researchers employ the cost matrices to assess and enhance classifiers, but they care more
about the class imbalance in datasets rather than the costs led by misclassification. In the field of
object classification, some researchers began to pay attention to the problem of misclassification
and devised methods to measure and reduce mistake severity based on the hierarchical information
of labels [1, 12, 4]. For instance, Bertinetto et al. [1] devised the hierarchical distance of a mistake
and average hierarchical distance of top-K to quantify the severity of mistakes, and proposed the
hierarchical cross-entropy loss to reduce the severity of mistakes. Garg et al. [12] proposed to learn a
hierarchy-aware feature space to explicitly learn the hierarchy of labels during the training phase.
All these works are based on the cost definition composed of semantic hierarchical information and
lowest common ancestor, which can be traced back to WordNet [11].

However, directly applying the experience from hierarchy-based severity learning to the visual
emotion recognition task is challenging, because the multi-hierarchy relationships in object categories
do not exist in emotional categories, thus we can not utilize hierarchy information to define the
severity of misclassification. And we could not adopt additional classifier to capture the structure
available in the label space [12, 3]. While this severity is essential for designing a robust measure and
effective loss function for the visual recognition task. And prior works have pointed out that making
the classifier to learn both ground truth information and label structure will degrade the classification
accuracy [12].

To address the above-mentioned issue, we define the concept of emotional distance (or cost) for
misclassification based on the Mikel’s wheel [23, 57], and further propose novel metrics for evalu-
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ating the performance of emotion classi�cation methods using this concept as a foundation. More
speci�cally, we �rst de�ne the cost matrix for different misclassi�cation cases according to the
de�nition of the distance in [57] and of the affective polarity in Mikel's Wheel. On the basis of the
confusion matrix between the cost matrix and the classi�cation results, we then propose a new visual
emotion recognition evaluation measure ECC to measure all possible classi�cation results, as well as
a measure EMC focusing more on the cases of misclassi�cation. We verify the effectiveness of the
measures via the semi-supervised emotion recognition task, demonstrating that our metrics provide a
more robust assessment of method performance than accuracy alone. And we prove through user
study that the design of our metrics are in line with human cognition. As far as we know, both EMC
and ECC are the �rst metrics that evaluate the performance of visual emotion classi�ction algorithms
by taking the in�uence of misclassi�ction into consideration.

Our main contributions can be summarized as follows: 1). We are the �rst to introduce the concept
of mistake cost into visual emotion recognition, and propose new measures based on Mikel's wheel
to better assess the performance of emotion classi�cation methods. 2). In semi-supervised emotion
classi�cation tasks, from the perspectives of threshold adjustment and model selection, on one hand,
compared to complex con�dence threshold adjustment mechanisms, our measures can be more
simply yet effectively applied in the pseudo-labeling process, enhancing the model's classi�cation
performance. On the other hand, we demonstrate that our metrics can help select the model capable
of generating higher-quality pseudo-labels that are bene�cial for training. 3). Finally, we discussed
the relationship between our metrics andACC2, and we further validate our metrics through user
study, con�rming that they provide results consistent with human emotional cognition in evaluating
the severity of sample misclassi�cation by the model.

2 Related Work

2.1 Visual Emotion Recognition

With the advent of deep learning, many methods [60, 30, 53, 38, 49, 29, 46, 42, 56, 54, 55] have
begun to use convolutional neural network (CNN) for visual emotion recognition. Many of these
researchers have explored the relationship between emotions. Based on Plutchik's [28] theory that
different emotions have different similarities. Zhao et al. [57] proposed the emotional distance for
the �rst time based on Mikel's Wheel, which is used to calculate the emotional similarity between
two pairs of pictures. In addition, Yang et al. [46] designed affective polarity on Mikel's wheel and
proposed a new hierarchical cross-entropy loss to distinguish between dif�cult and easy cases in
a speci�c emotional way. Inspired by the large-scale pretrained language models, Deng et al. [8]
propose a �ne-tuning strategy based on prompts. Pan et al. [25] generate pseudo labels through
visual language models as auxiliary guidance for multi-stage visual perception. However, due to the
ambiguity and subjectivity of emotions, a single image often elicits multiple emotional responses,
when dealing with visual emotion recognition tasks, it is more reasonable to use label distribution
than single label classi�cation. In [48], they generate sentiment distributions from a single emotion
dataset based on emotional distance to solve this problem. Moveover, inspired by the inherent
relationship between emotions in psychology. Yang et al. [45] propose a well-based circular structure
representation to use prior knowledge to learn visual emotion distribution. However, these efforts
mainly focused on improving accuracy, ignoring the fact that the severity of misclassi�cation is not
the same for different classi�cation results, and at the same time, the constraints of �tting the label
distribution may be strict, which often have the opposite effect.

2.2 Cost-Sensitive Classi�cation

The importance of studying misclassi�cation has attracted a lot of attention in the era of machine
learning, but it has been neglected in the era of deep learning. In the �eld of machine learning, Wei et
al. [40] proposed the measure of confusion entropy to evaluate the performance of classi�ers, which
utilizes the distribution information of misclassi�ed categories for all categories. This problem is also
described as `cost-sensitive' by introducing the cost imbalance between different misclassi�cations in
real-world applications, and providing solutions that meet practical needs. Classic problems include
bank lending issues, disease diagnosis issues [9, 51, 4], etc. The most common cost-sensitive solution
is rescaling, which mainly preprocesses the training set to improve the sensitivity to classi�cation
results. Speci�cally, Turney [35] studies how to choose the correct cost assignment in cost-sensitive
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classi�cation problems, and further explores the meaning and impact of cost values. Metacost [9]
calculates the ideal class for each training sample by estimating the posterior probability density of
the training samples and modi�es the class of the original training sample to change the new data set.
Different from the previous approaches, Zhou et al. [59] pointed out that in addition to the correction
of the classi�cation algorithm and dataset, the cost matrix needs to be corrected, which solves the
problem that it is often ineffective for multi-class cost-sensitive learning. However, this kind of
problem focuses more on the class imbalance of the dataset, and gradually loses interest in the cost of
misclassi�cation.

2.3 Hierarchy Aware Classi�cation

In recent years, a small part of the work has begun to focus on the problem of the mistake severity
and devised methods to reduce it. Deng et al. [6] pointed out that classi�cation can be improved by
using semantic hierarchical information from WordNet [11], which laid the foundation for future
research. Furthermore, Bertinetto et al. [1] summarized and analyzed the issue of mistake severity,
and proposed hierarchical cross-entropy loss to reduce the severity of mistakes. They also introduced
two measures, hierarchical distance of a mistake and average hierarchical distance of top-K , to
quantify the severity of misclassi�cation. However, reducing the severity of misclassi�cation is
premised on reducing accuracy. Karthik et al. [17] use Conditional Risk Minimization (CRM) to
improve this shortcoming, reducing the severity of mistakes without compromising accuracy. But
CRM doesn't change the model, it's about making the best choice of the moment during the testing
phase. In order to solve this problem elegantly, Garg et al. [12] propose to learn a Hierarchy Aware
Feature(HAF) space to explicitly learn the hierarchy of labels during the training phase. In [15],
they train two separate models for coarse-grained and �ne-grained, and make the �nal prediction
by calculating the normalized scores of the two models in the reasoning process. Although some
progress have been made in these studies in the direction of hierarchical labeling, there is still a
lack of research in visual emotion recognition. Different from they use lowest common ancestor
(LCA) measure to assess the severity of mistakes, we de�ne our measures based on Mikel's wheel
and confusion matrix, and demonstrate their effectiveness.

3 Misclassi�cation-Aware Measure Design

3.1 De�nition of Emotional Distance

In almost classi�cation tasks, accuracy serves as an important evaluation metric, measuring the
model's capacity of predicting categories. However, this measure is built on a binary philosophy, i.e.,
only considering whether or not the predicted category matches the true label. In fact, distinguishing
between different types of mismatch is meaningful, particularly in the �eld of emotion classi�cation.
For example, due to the similarity between emotions, misclassifying `excitement' as `awe' may be
acceptable in certain diagnose, while misclassifying it as `sadness' could lead to severe diagnostic
errors in clinic psychology. Based on this reasoning, we therefore de�ne emotional distances to
characterize their relative relationships, and further to aid in quantifying the degree of severity of
misclassi�cation. Existing psychological models such as CES and DES, either model emotions as
completely independent categories or represent them as multidimensional continuous vectors. The
former ignores the similarity between emotions, while the latter requires precise measurement of
emotions by experts, which can be hard to achieve for visual emotion recognition task. In [57], authors
provide a de�nition between emotional labels based on Mikel's wheel, where the paired emotional
distance is1+ `wheel distance'. The `wheel distance' means the number of steps when moving from
one category to another on the wheel like shown in Fig. 2 (a). However, this de�nition of emotion
distance neglects the emotional polarity [47], e.g., the distance between `fear' and `excitement' being
the same as the distance between `fear' and `sadness'. But the distance between categories with
opposite polarity should be greater than those with the same polarity, as shown in Fig. 2 (b). We thus
de�ne the emotional distance as follows:

Wi;j =
�

1 + dist ( ei ; ej ) ei ; ej 2 Cp

C + dist ( ei ; ej ) ei ; ej =2 Cp
; (1)

wheredist (ei ; ej ) represents the number of steps on the Mikel's wheel,C is a constant to adapt the
importance of polarity, and a largerC means misclassifying one emotion into the opposite polarity
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Figure 2: (a) Mikel's emotion distance. (b) Our emotion distance/rank which is labeled with
`excitement'. (c) The correspondence between the three measures of ACC, ECC and EMC in the
confusion matrix.

is more severe, and we de�neC as 4 in order to ensure that the emotional distance within the
same polarity is always less than the emotional distance between different polarities.Cp represents
the classes that have the same polarity. We can �nally obtain a symmetric cost matrix with each
element being the distance between the corresponding emotions. Although our emotional distance
is de�ned based on Mikel's wheel for classifying eight emotions, it is important to note that when
calculating the classi�cation of six emotions based on Ekman's model, we can still use a similar
method for determining emotional distances. To achieve it, we can initially follow the de�nition used
by Mikel's wheel, calculating the emotional distances for the same emotions present in both models.
Subsequently, we can adjust the distances between opposite emotion labels based on emotional
polarity. Due to the inherent nature of the distance de�nition in Mikel's Wheel, our main focus here
is on the issue of classifying the eight categories of emotions.

3.2 Emotion Confusion Con�dence (ECC)

Wei et al. [40] used the category distribution information of all categories of misclassi�cation to
propose the concept of confusion entropy to measure the standard. Inspired by them, we design our
measures based on a confusion matrix. As shown in Fig. 2 (c), the confusion matrix is de�ned as a
N×N matrix, whereN represents the number of classes. The rows of the confusion matrix represent
the true labels, while the columns represent the predicted ones. Each element inSi;j represents the
number of samples classi�ed from the correct categoryi to the categoryj . The diagonal elements of
the confusion matrix represents the number of samples correctly classi�ed for each class. Hence the
sum of diagonal elements of confusion matrixNc divided by the total number of samplesN represents
ACC. While other elements represent the number of samples belonging to the categoryi that are
wrongly classi�ed into categoryj . The drawback of accuracy lies in its exclusive consideration
of correct classi�cations along the diagonal of the confusion matrix, while disregarding equally
important misclassi�cations elsewhere in the matrix. This implies that accuracy may be misleadingly
high in scenarios of class imbalance. Although directly using the confusion matrix as a metric
allows for the consideration of both correct and incorrect classi�cations (misclassi�cations), this
metric overlooks the distance between emotions in psychology. To take both correct classi�cations,
misclassi�cations and emotional distance into evaluation, we propose to use emotional distance to
modulate the confusion matrix. Based on this design philosophy, the ACC can be re-formulated as
the product of the confusion matrix and a modulation factorM i;j as:

ACC =
Nc

N
=

P c
j =1

P c
i=1 Si;j � M i;j

N
; M i;j =

�
1 i = j
0 i 6= j

; (2)

wherec denotes the number of all classes,Nc represents the count of correct classi�cations. It implies
that one sample is counted as 1 only if it is correctly classi�ed, other misclassi�ed samples are not
distinguished and are all recorded as 0. However, as we explained previously, misclassi�cations can
be acceptable to some extent when the emotional classes are similar. Thus we tackle these samples
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as `quasi correctly classi�ed samples' and weighted with a value between(0; 1). The smaller the
similarity of emotions, the less acceptable the misclassi�ed sample becomes, hence the smaller
the corresponding value it will have, and vice versa. To achieve this, we rely on the reciprocal of
the emotional distanceWi;j de�ned in Eq. 1 to replace the modulation factorM i;j in Eq. 2 for the
misclassi�ed samples to obtain ECC in Eq. 3.

ECC =

P c
j =1

P c
i=1 Si;j � 1

W i;j

N
= ACC +

P c
j =1

P c
i=1 ;i 6= j Si;j � 1

W i;j

N
(3)

In this way, misclassi�ed samples are no longer simply neglected like in ACC, but have weights
in terms of emotional distances, which also means that our measure ECC make use of the entire
confusion matrix, including elements both inside and outside the diagonal as shown in Fig. 2(c).

3.3 Emotional Misclassi�cation Con�dence (EMC)

In some practical scenarios, people pay more attention to cases of misclassi�cation, like estimating
the severity of misdiagnosis of a certain mental diease, while both ACC and ECC include the cases
of correct classi�cation, hence failing to provide information about misclassi�cation. Therefore, in
order to only consider the cases of misclassi�cation, one can extract the term(

P c
j =1

P c
i=1 ;i 6= j Si;j �

1
W i;j

)=N that excludes ACC from Eq. 3 as an indicator for evaluating misclassi�cation. However,
directly using this terms as a misclassi�cation measure is inappropriate for two reasons: 1). The
denominator of this term isN, indicating that its value is still in�uenced by correct classi�ed samples,
rather than solely considering the misclassi�ed samples. 2). The maximal value of this term is 0.5,
which we hope to be 1 as ACC and ECC. We accordingly modify this term and propose a novel
measure for misclassi�cation description in Eq. 4, named Emotional Misclassi�cation Con�dence
(EMC):

EMC =

P c
j =1

P c
i=1 ;i 6= j Si;j � 1

W i;j � 1

N � Nc
(4)

This metric considers only misclassifed samplesSi;j ; i 6= j and their numberN � Nc, meanwhile
modifying the modulation factor from 1

W i;j
to 1

W i;j � 1 to ensure a maximum value of 1.

In this way, we have an ECC that measures the overall classi�cation results, as well as EMC that is
specially designed to measure the severity of misclassi�cation. The cooperation of two measures can
better evaluate the visual emotion recognition task.

4 Experiments and Results

4.1 Datasets

We evaluate our metrics on two widely applied datasets EmoSet [44] and FI [50]. EmoSet is based on
Mikel's eight-categorical sentiment model, which uses 810 keywords and collects from four different
sources, including openverse, pexels, pixabay and rawpixels. It covers different emotional attributes,
i.e., low-level (brightness and colorfulness), mid-level (scene type and object class), and high-level
(facial expression and human action). Finally, 60 annotators who passed the test annotated a total of
118,102 images. The FI dataset was collected from Flickr and Instagram through eight sentiment
keywords, and was built based on Mikel's eight-category sentiment model, which contains about
23,308 images.

4.2 Applications to Semi-Supervised Emotion Recognition

Because of the ambiguity of emotions [16], annotating high-quality and large-scale datasets for visual
emotion recognition is arduous and challenging. Semi-supervised learning is an effective solution
which consists of training the model based on both labeled and unlabeled data, then annotating
unlabled examples by this trained model. While for pesudo labeling based semi-supervised learning
methods, selecting appropriate models and labeling con�dence thresholds play key roles in determin-
ing the �nal performance. In this section, we carry out experiments on two perspectives: the model
selection and the adjustment of labeling threshold, to demonstrate how our proposed measures can
bene�t this task.
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Table 1: We conduct experiments on the datasets FI [50] and EmoSet [44], and evaluate the exper-
imental results using ACC. It is considered fair to compare our method in 4.2.1 with FixMatch
and FlexMatch, given that all of them employ threshold adjustment methodologies.Where `TA'
means threshold adjustment.Based onS2-VER, we compared our method in 4.2.2 with all the
state-of-the-art semi-supervised methods.

FI EmoSet

label num 80 800 1600 400 4000 8000
TA

Fixmatch [32] 28.2±0.78 37.4±0.51 42.2±0.2931.1±0.41 42.3±0.65 45.8±1.25

Flexmatch [52] 29.7±0.90 38.2±0.49 40.6±0.5530.4±0.78 42.8±0.34 44.9±1.24

Ours( 4.2.1) 31.2±0.12 40.8±0.34 42.7±0.2131.6±0.56 43.7±0.69 47.6±0.61

S
ta

te
-o

f-
th

e-
ar

t Comatch [20] 36.7±0.87 43.5±0.39 47.9±0.2630.3±0.97 44.2±0.41 46.8±0.49

Simmatch [58] 31.4±1.26 41.9±0.57 43.7±0.6236.3±0.22 44.7±0.34 50.2±0.71

Freematch [39]26.0±1.66 37.3±0.43 39.9±0.8731.2±1.63 41.5±0.59 46.3±0.61

Softmatch [5] 30.7±1.31 37.9±0.78 40.7±0.1930.8±0.35 44.0±1.28 45.8±0.25

S2-VER [ 16] 39.1±0.66 46.9±0.46 51.8±0.2144.9±0.35 57.5±0.51 60.2±0.34

Ours( 4.2.2) 40.2±1.08 48.9±0.91 52.1±0.3347.0±0.18 59.0±0.33 61.5±0.12

4.2.1 Adjustment of Con�dence Threshold

For pseudo label-based semi-supervised learning methods, a con�dence threshold is used to determine
whether current labeled samples are �ltered will directly affect the number of training samples and
the proportion of correct labels in each epoch: a high threshold will excessively �lter out high-quality
unlabeled data, leading to insuf�cient training data, while a low threshold will allow more low-quality
unlabeled data, making the model converge to a poor local minima. How to select an appropriate
threshold of pseudo-labeling in the training process has always been a hotspot for semi-supervised
learning [5]. Existing methods either use an intuitive constant threshold [32] that is widely adopted
in other semi-supervised learning tasks, or a dynamic threshold that varies in terms of the estimated
learning status [52]. Considering that EMC can measure the severity of misclassi�cation, we therefore
recommend using EMC to dynamically adjust the con�dence threshold before each epoch. This is
similar to how, in a clinical scenario, a patient not only refers to the doctor's current con�dence in the
diagnosis but also takes into account the doctor's historical reputation (frequency of misdiagnoses
and medical errors) to ultimately judge the reliability of the current diagnosis. For semi-supervised
emotion recognition tasks, since there are only a few labeled samples available for training, the model
can easily over�t these samples, resulting in all correct predictions and thus making it impossible to
calculate EMC. To address this situation without introducing additional training data or increasing
computational payload, we treat the pseudo-labels generated from weakly augmented unlabeled
samples as the ground truth, and use the predicted labels from strongly augmented samples as the
model's predictions to calculate EMC. Since the labels of the same sample should remain consistent
under different data augmentation methods, a large EMC indicates that the model provide similar
emotional predictions with different augment methods. This suggests that the model has grasped
the underlying visual elements that represent emotions in images, which re�ects the reliability and
high quality of the pseudo labels. Therefore, we can lower the con�dence threshold, allowing more
pseudo-labeled samples to participate in the training process. On the contrary, when the EMC is
small, we can raise the threshold and �lter out the low-quality samples. We can realize the above
con�dence adjustment mechanism by simply setting:

� 0
t = � �

e
EMC t

; (5)

where� is the pre-de�ned threshold,� 0
t is the new threshold at time stept, EMC t represents the

EMC at time stept, e is a constant for different datasets. We de�ne� as 0.95. For FI, we de�nee as
0.5, and for EmoSet, we de�nee as 0.4. And we set the upper and lower bounds of� 0

t to 0.98 and
0.7 [16] respectively to ensure stability of the training process.

To test the effectiveness of our proposed con�dence adjustment mechanism built on EMC, we com-
pared it with two representative pesudo labeling based methods, Fixmatch [32] and Flexmatch [52],
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Figure 3: User study about our measures. (a) The pipeline of our user study. (b) The result of user
study, where the horizontal axis is the id of the image, the vertical axis is the number of votes, and
the results of different options have been distinguished by different colors.

where Fixmatch directly provides a �xed threshold, while Flexmatch assigns dynamic thresholds
to each class according to corresponding learning status. Experimental results in Tab. 1 show that,
thanks to our EMC-based threshold mechanism, our method is over 1% better than Flexmatch and
Fixmatch. Additionally, let us note that unlike the method Flexmatch that adjusts the threshold for
every category, we evaluate the entire ublabeled data based on a statistical perspective, and adjust the
overall threshold after measuring the EMC, which is computationally low-cost. And the experiment
is followed by [32].

4.2.2 Selection of Better Pseudo Labeling Models

Existing methods that typically use ACC to measure the model's capability of discriminating between
categories of unlabeled samples, i.e., models with higher ACC can provide more reliable pesudo label.
However, such models often suffer from the problem of con�rmation bias [34], where the model
will gradually deepen this error during the learning process. Accumulation of these errors eventually
leads to the �nal model being unable to achieve good classi�cation performances. As both ECC and
EMC are designed based on the consideration of the cases of misclassi�cation, which means they can
better distinguish the ambiguity of labels, and models selected in terms of ECC or EMC will less
effected by the cumulative con�rmation bias, providing high-quality labels than those based on ACC.

To prove that model with higher ECC or EMC is better for pesudo labeling, we train the same network
with different loss functions: cross-entropy lossL CE and the combination of cross-entropy loss and
order-based loss ListMLE [41] asL c = L CE+ � L ListMLE , where� is 1 andL ListMLE aims to constrain
the �nal prediction probability of the samples to follow a preset order, thus favoring higher ECC
and EMC (proved in Appendix A). This constraint will reduce the severity of misclassi�cation, at
the same time, the cost is to reduce ACC [1], speci�c experiment is in Appendix B. More precisely,
we �rst train the model withL CE , once it starts to converge (the model has preliminary ability of
recognition), we then keep the same loss function or replaceL CE with L c to make it continue to
focus on the correct classi�cation or focus more on the cases of misclassi�cation. Therefore, models
trained solely usingL CE exhibit better ACC but limited capability to distinguish error samples, and
the quality of the pseudo label is poor. Although the pseudo labels might still be incorrect compared
to the ground truth when using a combined loss function for training the model, the pseudo-labels
become closer to the ground truth. In such cases, these pseudo labels can still have a positive impact
on the training process and thereby improve the model's accuracy. As we show in Tab. 1, we adopt the
state-of-the-art methodS2-VER [16] as our baseline, as it generates more reliable pseudo labels by
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Table 2: We conducted experiments on the FI [50] and EmoSet [44] datasets using three backbones.
As mentioned above, the loss function employed the commonly used the cross-entropy lossL CE and
the combined lossL c.

Dataset FI EmoSet

Backbone Resnet18 Resnet50Resnet101Resnet18 Resnet50Resnet101

Loss function L CE L c L CE L c L CE L c L CE L c L CE L c L CE L c

ACC 65.8 64.4 67.6 66.2 68.1 65.6 73.9 72.4 76.2 74.3 76.7 74.5

ACC2 79.0 86.2 83.7 86.0 84.7 86.0 85.0 85.6 85.3 85.8 85.7 85.8

ECC 76.1 75.8 77.2 76.8 77.9 76.7 82.6 81.9 84.2 83.2 84.5 83.3

EMC 50.1 54.8 49.0 53.2 51.9 54.8 57.0 59.3 57.0 59.9 56.9 60.5

calculating the similarity between emotional prototypes and samples, but ignores the error of pseudo
labels. We follow the experimental setting of [16] and vary the proportions of the labeled samples
as 0.5%, 5% and 10% (corresponding to 80, 800, 1600 label number for FI, and 400, 4000, 8000
label number for EmoSet), it can be observed that under the different settings of the two datasets,
our method performs favorably againstS2-VER by 1% in accuracy. Meanwhile, our method also far
surpasses multiple state-of-the-art methods in semi-supervised learning. It indicates that choosing a
model with better misclassi�cation ability (better ECC and EMC) can produce pseudo labels of better
quality and bene�cial to the training process, thus achieving better semi-supervised performance.

4.3 Compare with Other Measure

ACC2 is a very important binary classi�cation metric in the �eld of emotion recognition [43, 8, 26, 44],
used to measure whether the classi�cation to the same emotional polarity is correct. More speci�cally,
when a sample labeled as `excitement' is classi�ed as `awe', it is incorrect to use accuracy for
evaluation. However, for metrics likeACC2, such a classi�cation is considered correct. In a
certain sense, metrics likeACC2, which involve coarse-grained classi�cation, take into account the
proximity of labels and consider misclassi�ed cases. This approach aligns with the objectives of
our measures. To further demonstrate the effectiveness of our metrics, As mentioned above, we
conducted experiments using both the cross-entropy lossL CE and the combined lossL c. As shown in
Tab. 2, although the accuracy of the combined loss is lower than that of the cross-entropy loss, its
ACC2 is higher. This indicates the shortcomings of using accuracy alone in certain situations, as it
fails to measure for misclassi�cations. Although the ECC also decreased due to the in�uence of the
ACC, since the ECC takes into account the situation of misclassi�cation, the gap between the two
models in terms of ECC is not signi�cant. As EMC considers metrics for misclassi�cation alone, the
EMC of the combined loss is signi�cantly higher than that of the cross-entropy loss. In this regard,
the trend of EMC aligns with that ofACC2, which also demonstrates the correlation between the
two metrics. In the confusion matrix,ACC2 actually represents the proportion of correctly classi�ed
samples in the top-left and bottom-right sections. This also indicates that our measures are actually
more re�ned measures that lies between Accuracy and ACC2.

4.4 User Study

Since our metrics is founded on principles of human cognition, we aim to further demonstrate that
our measures align with human judgments in emotion classi�cation results via user study.

Data preparation In order to have models having different levels of ECC, we take ResNet50 as
our network backbone and train it respectively with cross-entropy loss and combined lossL c =
L CE + � L ListMLE on the FI dataset, where� is 0.2. Then we perform predictions on the test set
and select the images that are misclassi�ed by both two models into different classes. Finally we
randomly select 50 eligible images, and �lter out the images with no obvious emotion or ambiguous
emotion, getting 30 carefully selected images as our tested images for user study.

Preference StudyWe invite 30 participants having different social backgrounds to our user preference
study, and the test for every participant lasts about 15 minutes. During the test session, each
misclassi�ed image will be presented to participants with three options: the incorrect class predicted
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Table 3: The table of comparative analysis of the impact of label ranking on single visual emotion
classi�cation task. We used ListMLE loss to do experiments on FI. `Our Rank' stands for the Mikel's
emotion rank we de�ned based on Mikel's wheel.`RA' means random scrambled labels, and `RE'
means scrambled labels in reverse rank. `w/o R1' means keeping the ground truth rank �rst when
scrambling the Label rank. Among them, the red font represents the best.

Resnet18 Resnet50 Resnet101

Label Rank ACC ECC EMC ACC ECC EMC ACC ECC EMC

RE w/o R1 60.6 70.2 40.4 63.4 73.1 43.3 63.8 73.6 44.4

RA w/o R1 61.2 71.5 48.6 63.8 74.1 48.6 64.4 74.6 49.5

Our Rank 63.9 75.1 58.4 65.7 77.0 51.5 67.9 77.6 52.2

from the model trained with cross-entropy loss, the incorrect class predicted from the model trained
with the combined loss function, and a third `Indistinct' option for cases where participants are
unable to discern the emotion of the image. And participants will choose their preferred options after
viewing each image.

ResultsIn all 900 collected votes, 487 votes are cast for the results produced by the model with
higher ECC, while 242 votes opt for the results generated by the model with higher ACC. There are
171 votes that opted for unidenti�able choices. Fig. 3 further shows the distribution of the votes for
each image, where we can observe that among 30 tested images, users preferred the classi�cation
results provided by the model with higher ECC over the model with higher ACC for 24 images,
representing 80% of the total tested images.

4.5 Validity of Emotional Distance De�nitions

We want to further explore the rationality of the de�ned emotional distance and determine whether it
can help models learn the semantic structure of labels. To answer the above question, we transform
emotional distance into ranking, and designed three sets of experiments based onL c and� is 1. The
speci�c experiments are shown in Table 3. And the speci�c experimental settings are detailed in
Appendix C. Since we are only focusing on the impact of emotional rank (emotional distance) on
the model, and changing the rank of ground truth label would prevent the model from training on
correct classi�cation categories. So we randomly shuf�e and reverse the rank of the other labels
while keeping the category with the �rst position in the emotional rank as the ground truth. Then,
according to the changed order, use ListMLE for training. As shown in Table 3. Our rank achieve
advanced performance in three measures. And the results are worse in reverse rank than random rank,
and they are signi�cantly worse than our rank. This shows that our rank is better, in line with human
cognition of label rank, and our label rank will help the model learn the emotion category structure.
Although the ranking of ground truth has not changed, a reasonable label ranking can often re�ect
the emotional and visual element relationship between images, which will enable the model to mine
the visual and semantic correlation between similar categories, so as to learn a better label semantic
structure. We have proven the rationality of emotional distance through above experiments. Since
the new measures ECC and EMC are designed based on emotional distance, it also validates the
rationality of our measures.

5 Conclusions

In this work, we de�ne the concept of misclassi�cation in the �eld of visual emotion recognition,
and propose new measures to evaluate the mistake severity in visual emotion recognition based on
Mikel's Wheel distance. We de�ne our emotional distance using the Mikel wheel and adopt it to
build cost matrix, then exert it to confusion matrix to compute emotion confusion con�dence (ECC)
and emotional mistakes con�dence (EMC). And we demonstrate that our measures are more robust in
semi-supervised learning. Our measures can not only help to select the model that can produce high-
quality pseudo labels, but also can be used as a reference standard to adjust the threshold adaptively.
Moreover, we verify that our new measures are consistent with human emotional cognition through
user study. Finally, we verify the validity of our emotional distance.
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Appendix
A Proof of the Relationship between New Measures and ListMLE

In this chapter, we mainly analyze the relationship between ACC and cross-entropy, ListMLE and
ECC. To prove that the relationship between ListMLE and ECC is equal to the relationship between
cross-entropy and ACC. so as to explain why ListMLE can be used as a backbone between ECC.
First of all, let’s review the formula of cross-entropy loss:

Lce = � 1

n

nX
i=1

cX
j=1

yij log fj(xi; �); (6)

where n represents the number of samples and c represents the number of categories. yij represents
the jth element of one-hot encoded label of the sample xi. � is the parameter set of the classifier.
fj(xi; �) represents the probability that the prediction of the ith sample is of category j.

For a single sample, the formula becomes:

Lce = �
cX

j=1

yj log fj(x; �) (7)

However, the formula of ACC is:

ACC =

Pc
j=1

Pc
i=1 Si,j �Mi,j

N
(8)

In fact, the effect of yj is the same as that of Mi,j . the optimization goal of cross-entropy is to
maximize the prediction probability of real categories, while ACC only calculates the number of
samples predicted to the correct category.

In fact, the cross-entropy loss is also sensitive to the order. According to the paper [2], the cross-
entropy loss can be written in the form of likelihood loss. Suppose that � is a permutation of n objects,
and � is a strictly increasing positive function, then the probability of permutation � of a given score
list s is defined as

Ps(�) =

nY
j=1

�
�
sπ(j)

�Pn
k=j �

�
sπ(k)

� (9)

In addition, Top One Probability is defined as:

Ps(j) =
X

π(1)=j,π∈Ωn

Ps(�) (10)

If the predicted ranking score for a given category is given, then the cross-entropy is equal to the row
that wants to put ground truth first in the ranking:

Lce = �
cX

j=1

yj log fj(x; �) � � logPs(j); (11)

If we want to consider the label correlation in the following sorting function, we only need to change
the permutation probability of Packers (j) to the sorting expectation for all categories. If we want to
consider the label correlation in the later sorting function, we only need to change the permutation
probability of Ps(j) to the sorting expectation for all categories.

LListMLE = � logPs(�) (12)

Here, we get the expectation permutation �, which is the emotional distance that we define. The
transformation of the likelihood function form of cross-entropy into ListMLE form is actually the
probability arrangement of prediction, from what is expected to be the first element to expecting all
elements to satisfy our defined element arrangement. So in terms of formula, the difference between
ECC and ACC is the difference in weight Mi,j and 1

Wi;j
. So in terms of formula, ACC is transformed

into ECC, that is, Mi,j is replaced by emotional distance.

ECC =

Pc
j=1

Pc
i=1 Si,j � 1

Wi;j

N
(13)
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